TABLE OF CONTENTS

1 ENVIRONMENTAL REVIEW PROCESS 1
1.1 Draft Tiered Initial Study 1
1.2 Scope and Purpose of the EIR 1
1.3 Environmental Review and Approval Process 2
1.4 Relationship to the 2003 LRDP and LRDP EIR 4
1.5 Organization of the EIR 5

2 PROJECT OVERVIEW 6
2.1 Introduction 6
2.2 Project Description and Objectives 6
2.3 Impact Summary 7
2.4 Alternatives to the Proposed Project 8
2.5 Known Areas of Controversy 8

3 PROJECT DESCRIPTION 10
3.1 Regional Location 10
3.2 Project Overview 10
3.3 Project Site 11
3.4 Project Need and Objectives 11
3.5 Project Elements 15

4 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES 21
4.1 Introduction 21
4.2 Scope of the EIR 21
4.3 Hazards & Hazardous Materials 23

5 OTHER CEQA REQUIRED SECTIONS 30
5.1 Growth-Inducing Impacts 30
5.2 Significant And Unavoidable Impacts 30
5.3 Significant Irreversible Environmental Changes 30

6 ALTERNATIVES 32
6.1 Alternatives Description 32
6.2 Alternatives Considered But Rejected 33
6.3 Alternatives Evaluated In Detail 34
6.4 Environmentally Superior Alternative 36

7 REFERENCES AND ACRONYMS/ABBREVIATIONS 37

8 AGENCIES & PERSONS CONSULTED 38
Appendix A. UC Davis CNPRC 2007 Research Laboratory Project Initial Study

Appendix B. Comments and Responses to Comments

LIST OF FIGURES

Figure 3.1. Regional Location 12
Figure 3.2. Project Location 13
Figure 3.3. Project Site Plan 14
1 Environmental Review Process

ThisFocused Tiered Draft Environmental Impact Report (Draft EIR) has been prepared to provide an analysis of certain potentially significant environmental effects of the University of California Davis (UC Davis), California National Primate Research Center 2007 Research Laboratory Project (CNPRC) (proposed project), which is a proposal to construct and operate new research buildings at the CNPRC. This Draft EIR is designed to inform university decision-makers, responsible agencies, and the public of the environmental consequences of implementing the proposed project. This Draft EIR has been prepared in accordance with and in fulfillment of the California Environmental Quality Act (CEQA), the State CEQA Guidelines, and the UC guidelines for the implementation of CEQA. The University of California is the lead agency for the proposed project and, as such, has authority over whether to approve the proposed project.

In accordance with CEQA Guidelines Sections 15152 and 15168 and Public Resource Code Section 21094, this environmental analysis is tiered from the EIR (State Clearinghouse No. 2002102092) that was prepared for the UC Davis 2003 Long Range Development Plan (2003 LRDP) (LRDP EIR). The 2003 LRDP is a comprehensive land use plan that will guide physical development on campus to accommodate projected enrollment increases and expanded and new program initiatives through the 2015-16 academic year. The proposed project is an element of the growth that was anticipated in the 2003 LRDP and evaluated in the LRDP EIR.

The CEQA concept of "tiering" refers to the evaluation of general environmental matters in a broad program level EIR, with subsequent focused environmental documents for individual projects that implement the program. CEQA and the CEQA Guidelines encourage the use of tiered environmental documents to reduce delays and excessive paperwork in the environmental review process. CEQA Guidelines Section 15168(d) provides for simplifying the preparation of environmental documents on individual parts of the program by incorporating by reference analyses and discussions that apply to the program as a whole. Where an EIR has been prepared or certified for a program or plan, the environmental review for a later activity consistent with the program or plan should be limited to potentially significant effects on the environment that were not analyzed as significant in the prior EIR, that are susceptible to substantial reduction or avoidance (CEQA Guidelines Section 15152[d]), or were not adequately addressed in the prior EIR (CEQA Guidelines Section 15152[f]).

1.1 Draft Tiered Initial Study

UC Davis prepared a Notice of Preparation (NOP) and issued a Tiered Initial Study (Tiered IS) on October 16, 2006 (Appendix A) that was tiered from the 2003 LRDP EIR. The Tiered IS evaluated potential environmental effects of the proposed project, identified which issues were adequately addressed in the 2003 LRDP EIR, and identified which issues would require further analysis in the Focused Tiered Draft EIR. Based on the Tiered IS, UC Davis decided to prepare a Focused Tiered Draft EIR to evaluate potential impacts related to Hazards and Hazardous Materials. Therefore, this Focused Tiered Draft EIR has been prepared to further evaluate the significance of impacts in this area and to develop, if necessary, project specific mitigation measures.

1.2 Scope and Purpose of the EIR

Based on the analysis in the previously prepared Draft Tiered IS, it has been determined that the proposed project would not result in any potentially significant impacts that are not sufficiently addressed in the
2003 LRDP EIR and previously adopted mitigation measures. Therefore, the tiered IS provided adequate environmental review of the project, and a negative declaration could have been prepared. However, the proposed project is potentially controversial because it is located at the CNPRC, which houses laboratory space for non-human primates. Therefore, this Focused Tiered Draft EIR has been prepared for the project. The Focused Tiered Draft EIR evaluates the potential impacts of the project in the following resource area:

Hazards and Hazardous Materials, specifically, impacts from increased use and generation of hazardous chemicals and waste and generation of biohazardous materials and waste associated with the proposed project.

As the lead agency, the University of California has elected to perform a Focused Tiered EIR for this project because of its awareness of historical concern by the community over animal research and the application, storage, and disposal of biohazardous materials. As such, this Focused EIR presents a greater level of detail and analysis of the project design and operation pertaining to hazardous materials than would be otherwise investigated in a Tiered IS.

1.3 ENVIRONMENTAL REVIEW AND APPROVAL PROCESS

Under CEQA, the lead agency for a project is the public agency with primary responsibility for carrying out or approving the project and for implementing the requirements of CEQA. CEQA Guidelines Section 15083 authorizes and encourages an early consultation or scoping process to help identify the range of actions, alternatives, mitigation measures, and significant effects to be analyzed and considered in an EIR and to help resolve the concerns of affected regulatory agencies, organizations, and the public. Scoping is designed to explore issues for environmental evaluation, ensuring that important considerations are not overlooked and uncovering concerns that might otherwise go unrecognized. UC Davis prepared a NOP and issued a Tiered IS on October 16, 2006 (Appendix A) (tiered from the 2003 LRDP EIR) to determine the environmental impact analyses that would be needed to adequately address the project. The NOP was circulated for a 30-day comment period from October 16, 2006 to November 15, 2006. Two comments received during the public and agency review period and responses to these comments are provided in Appendix B of this Draft EIR.

The lead agency responsible for considering implementation of the project and for preparing this Draft EIR is the University of California. CEQA requires that state and local government agencies consider the environmental effects of projects over which they have discretionary authority before taking action on those projects (Pub. Res. Code Section 21000 et seq.). CEQA also requires that each public agency avoid or mitigate to less-than-significant levels, wherever feasible, the significant environmental effects of projects it approves or implements. After completion of the environmental review process, including required public review periods, the University will decide whether to certify the Draft EIR as adequate according to CEQA and whether to take action on the proposed project.

As described above and in Section 15121(a) of the CEQA Guidelines, an EIR is an informational document for decision-makers and the general public that analyzes the significant environmental effects of a project, identifies possible ways to minimize significant effects, and describes reasonable alternatives to the project that could reduce or avoid its adverse environmental impacts. Public agencies with discretionary authority are required to consider the information in the Draft EIR, along with any other relevant information, in making decisions on the proposed project. Those state and local agencies, other than the lead agency, that are responsible for carrying out or approving a project, or elements of a project, are termed "responsible agencies" under CEQA. These responsible agencies may need to approve
portions of, grant permits for, or provide other discretionary approvals for the project. For this project, the only anticipated responsible agency is the Yolo-Solano Air Pollution Control District (YSAQMD).

1.3.1 Public and Agency Review

This Draft EIR will be circulated for a 45-day public and agency review period from January 22, 2007 to March 7, 2007. Comments on the Draft EIR must be received by 5:00 p.m. on March 7, 2007, and may be emailed to environreview@ucdavis.edu or sent to:

John A. Meyer
Vice Chancellor - Resource Management and Planning
University of California
376 Mrak Hall
One Shields Avenue
Davis, CA 95616

Comments relating to this Draft EIR may also be presented orally during a public hearing on February 22, 2006, at 7:00 PM at the University Club on the UC Davis campus.

1.3.2 Availability of Documents

This Draft EIR, and documents incorporated by reference in this Draft EIR, are available for review during normal operating hours at the UC Davis Office of Resource Management and Planning at 376 Mrak Hall on the UC Davis campus; at the Reserves in Shields Library on the UC Davis campus; at the Yolo County Public Library, 3 15 E. 14th Street, Davis; at the Vacaville Public Library, 1020 Ulatis Drive, Vacaville; and online during the public review period at http://www.ormp.ucdavis.edu/environreview/. Copies of the 2003 LRDP and the 2003 LRDP EIR are available at the above locations. Reference materials used in the preparation of these documents are also available during normal office hours at the UC Davis Office of Resource Management and Planning.

1.3.3 Project Approval

Following the public hearing on this Draft EIR and after the close of the written public comment period, responses to written and oral comments on the environmental effects of the proposed project will be prepared and published in a Focused Tiered Final EIR document. The EIR will be reviewed by the University of California and will be certified if it is determined to be in compliance with CEQA. Following certification of the Focused Tiered EIR, the University of California will consider approval of the proposed project. It is anticipated that the proposed project will be considered for approval in March or April of 2007.

1.2.4 CEQA Findings and Mitigation Monitoring

CEQA requires decision-makers to adopt mitigation measures to substantially lessen significant impacts whenever feasible. Section 15091 of the CEQA Guidelines requires that, when approving a project, the lead agency makes certain findings with respect to the significant effects of the project, whether such effects can be substantially lessened through mitigation or alternatives, whether the mitigation or alternatives are feasible, and responsibility for execution of mitigation. Section 21081.6 of the California Public Resources Code and Sections 15091(d) and 15097 of the CEQA Guidelines require public agencies "to adopt a reporting and monitoring program for changes to the project which it has adopted or made a condition of project approval in order to mitigate or avoid significant effects on the environment." In
Chapter 4 of this Draft EIR, no mitigation measures were identified because the environmental analysis revealed that the project would not result in any significant project-specific impacts. If, at the time of project approval, any project-specific mitigation measures are adopted, a Mitigation Monitoring and Reporting Plan will be included in the Final EIR. The University of California will adopt project-specific findings to explain the relationship between the MMRP that was adopted for the 2003 LRDP EIR and the on-going implementation of mitigation measures in the 2003 LRDP EIR MMRP that are applicable to the proposed project.

1.4 RELATIONSHIP TO THE 2003 LRDP AND LRDP EIR

This environmental analysis is tiered from the 2003 LRDP EIR (State Clearinghouse No. 2002102092). The 2003 LRDP is a comprehensive land use plan that will guide physical development on campus to accommodate projected enrollment increases and expanded and new program initiatives through the 2015-16 academic year. The proposed project is an element of the growth that was anticipated in the 2003 LRDP and evaluated in the LRDP EIR.

The 2003 LRDP EIR identified that the campus would expand research facilities and forecast an increased of 2.5 million assignable square feet (ASF). The 2003 LRDP EIR evaluated some of that growth as occurring at the CNPRC and identified a land use objective of establishing an expanded zone at the CNPRC to accommodate future growth (UC Davis 2003 LRDP, page 60).

The Tiered Initial Study for the proposed project concluded that all potentially significant environmental impacts of the proposed project and mitigation measures that previously were adopted at the time the 2003 LRDP was approved have been adequately addressed.

The Tiered IS prepared for the proposed project concluded that the proposed project would not result in any potentially significant impacts that were not sufficiently addressed and mitigated by the 2003 LRDP EIR, and therefore, a negative declaration would be appropriate. However, the campus has elected to prepare a focused Tiered EIR to provide the public and decision makers with additional information because the project is potentially controversial and does involve increased use of biohazardous materials. Hence, the EIR will further evaluate potential project impacts to Hazards and Hazardous Materials.

Tiering of the environmental analysis for the proposed project pursuant to the CEQA Guidelines allows this Focused Tiered Draft EIR to rely on the 2003 LRDP EIR for the following:

- A discussion of general background and setting information for environmental topic areas;
- Overall growth related issues;
- Issues that were evaluated in sufficient detail in the 2003 LRDP EIR for which there is no significant new information or change in circumstances that would require further analysis; and
- Assessment of cumulative impacts.

In addition, mitigation measures that were previously adopted for the 2003 LRDP EIR that are related to, and designed to reduce the impacts of, this project are identified in this Draft EIR. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they are included in the proposed project and would not be readopted. The benefits of these mitigation measures will be achieved independently of considering them specific mitigation measures of this project. Nothing in this Draft EIR in any way alters the obligations of the campus to implement the LRDP mitigation measures. Please see Section 1.2.2 regarding the availability of the 2003 LRDP EIR and other documents incorporated by reference.
1.5 Organization of the EIR

The content and format of this Draft EIR are designed to meet the requirements of CEQA and the CEQA Guidelines (Sections 15122 through 15132). The Draft EIR is organized into the following chapters so that the reader can easily obtain information about the proposed project and the specific environmental issues:

- **Chapter 1, Environmental Review Process**, explains the CEQA process and the purpose of this Draft EIR; lists the lead, responsible, and trustee agencies with discretionary authority over the proposed project; provides information on the public and agency review and approval process; describes the relationship of the proposed project and the 2003 LRDP EIR; and outlines the organization of this Draft EIR.

- **Chapter 2, Project Overview**, presents an overview of the proposed project; a summary of the alternatives being considered; a discussion of known areas of controversy; and a listing of the impacts of the proposed project and mitigation measures in a table format, including the significance of impacts before and after mitigation.

- **Chapter 3, Project Description**, provides background on the proposed project; identifies the project objectives; lists the likely regulatory requirements of the project; and describes the facility- and construction-related improvements that comprise the proposed project.

- **Chapter 4, Environmental Setting, Impacts, and Mitigation Measures**, explains the approach to the environmental analysis for this EIR and includes a description of the baseline, or existing conditions, and the regulatory setting. Following the setting information, this section provides an analysis of impacts that would result from implementation of the proposed project.

- **Chapter 5, Other CEQA-Required Sections**, identifies the growth-inducing impacts, the significant and unavoidable impacts of implementing the proposed project, and the significant and irreversible commitment of resources.

- **Chapter 6, Alternatives**, analyzes the environmental impacts of four alternatives to the proposed project and compares them to the proposed project. The chapter also serves to describe the alternatives to the proposed project that were considered but eliminated from further consideration. The environmentally superior alternative also is identified in this chapter.

- **Chapter 7, References and Acronyms/Abbreviations**, provides information about the published documents and other, unpublished information (personal communications) cited in this Draft EIR and provides a list of acronyms/abbreviations that are used in the Draft EIR.

- **Chapter 8, Agencies and Persons Consulted**, lists the people and agencies consulted in preparation of this Draft EIR.

- **Chapter 9, Report Preparers**, lists the individuals who were involved in preparing this Draft EIR and the individuals who provided information.

- **Appendix A** includes the Tiered IS and NOP and **Appendix B** includes comments on the NOP and UC Davis' responses to the comments. This information is used to support the analysis and conclusions presented in the Draft EIR.
2 PROJECT OVERVIEW

2.1 INTRODUCTION

This Focused Tiered Draft EIR evaluates the potential environmental impacts of UC Davis' 2007 CNPRC Laboratory Improvements Project, which is a proposal to increase the laboratory research space at the UC Davis CNPRC. This overview highlights the major areas of importance in the environmental analysis for the proposed project, as required by Section 15123 of the CEQA Guidelines. It also provides a brief description of the project, project objectives, community/agency issues, alternatives to the project, and areas of controversy known to the University. In addition, this chapter provides a table summarizing: (1) the potential environmental impacts that would occur as the result of implementation of the project; (2) the level of impact significance before mitigation; (3) the recommended mitigation measures that would avoid or reduce significant environmental impacts; and (4) the level of impact significance after mitigation measures are implemented.

2.2 PROJECT DESCRIPTION AND OBJECTIVES

UC Davis proposes to construct five buildings and provide new utility connections to increase the space available for existing and proposed laboratory research and support at the UC Davis CNPRC. None of the proposed buildings would provide housing for animals and the proposed project would not increase the number of laboratory research animals at the CNPRC. The first building would be approximately 10,000 gross square feet (gsf) and would be constructed to focus on virology and immunology research. The proposed use of biohazardous substances in this building would require that a portion of the building be constructed and operated as a biosafety level (BSL) 3 facility.1

The proposed virology and immunology building would encompass 10,000 gsf (6,700 assignable square feet (asf)). The building would include 1,200 asf of office and office support space, 5,300 asf of laboratory space and laboratory support space, and 200 asf of building support space.2 The proposed laboratory space would include approximately 1,100 asf would be designed as a BSL 3 laboratory suite containment and operational requirements for research involving potentially infectious agents. The building would be constructed in phases, and the first phase of the building would consist of approximately 5,500 gsf with the BSL 3 laboratory portion of the building comprising approximately 1,100 asf. Space within the first phase would also provide BSL 2 space. See Section 3.5.1 of this Draft EIR for a definition of biosafety levels.

The second building would be a modular building of approximately 1,500 gsf and would focus on general biomedical research with activities including National Institutes of Health (NIH) supported studies on stem and progenitor cells. The third building would be a modular building of approximately 1,500 gsf and would provide office support for the stem and progenitor cell research laboratory. The fourth building would be approximately 1,500 gsf and would be utilized for general biomedical research. The fifth building would be approximately 1,500 gsf and provide office support space for the general biomedical research building.

The four proposed modular laboratory and office buildings would provide; 1) additional laboratory and office space for existing research programs that currently require increased space, and 2) general biomedical research with activities including NIH supported studies utilizing stem and progenitor cells.

1 Biosafety ratings range from Level 1 to Level 4 and indicate the varying degrees of building containment and laboratory precautions that must be followed while conducting research with particular organisms.
2 ASF refers to the actual usable space with a building that can be assigned for use. Excluded from asf are areas such as mechanical rooms, hallways, and service space.
The buildings would be approximately 24 feet by 60 feet each and would provide approximately 3,000 gsf of new laboratory and support space and 3,000 gsf of new office space. In total, the proposed project would provide approximately 16,000 gsf of new space and would increase the campus population by approximately 20 employees. None of the proposed buildings would provide housing for animals and the proposed projects would not increase the number of laboratory research animals at the CNPRC. The buildings would be located west of County Road 98 and approximately two miles west of the UC Davis main campus within the developed area of the CNPRC north of the existing Primate Center Laboratory building.

The proposed project includes utility upgrades to serve growth at the CNPRC including the proposed project and projects previously approved at the CNPRC but not yet constructed. The proposed utilities include telecommunications, natural gas, and domestic water mains. These improvements would be installed as part of the proposed project with connections extending west, across County Road 98 to connection points in Hutchison Drive.

In summary, the objectives of the proposed project are to provide additional research space to address space deficiencies that have resulted from program growth. The Virology and Immunology Building and the Biomedical Research Modular Buildings would provide the needed space and meet additional objectives relating to the need to co-locate researchers, provide modern facilities for bio-containment requirements, improving process efficiency and worker safety, and providing necessary utilities. Details of the project objectives are provided in Section 3.4 of this Focused Tiered Draft EIR.

2.3 IMPACT SUMMARY

Table 2-1 provides a complete list of all impacts related to hazards, on which this EIR is focused. As Table 2-1 shows, the impacts have been found to be less than significant and no mitigation is required.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Before Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Hazardous Chemicals Transport, Use and Disposal.</td>
<td>LS</td>
<td>No mitigation is needed</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Hazardous Chemicals Risk of Accidental Release.</td>
<td>LS</td>
<td>No mitigation is needed</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Biohazardous Materials Transport, Use, and Disposal.</td>
<td>LS</td>
<td>No mitigation is needed</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Biohazardous Materials Risk of Accidental Release.</td>
<td>LS</td>
<td>No mitigation is needed</td>
</tr>
</tbody>
</table>
2.4 ALTERNATIVES TO THE PROPOSED PROJECT

The following alternatives are analyzed in detail in Chapter 6 of this Focused Tiered Draft EIR in comparison to the proposed project. The purpose of the alternatives analysis is to determine whether an alternative would feasibly attain some or most of the project objectives, while avoiding or substantially lessening some of the significant effects of the proposed project. The project alternatives include:

- **No Project-No Build:** The project would not be constructed. Where feasible, existing laboratories would be used to conduct research projects. The campus would make no modifications to the existing facilities but would attempt to conduct as much of the proposed research as possible utilizing existing facilities.

- **Construction at Alternative UC Davis Locations:** This alternative would construct the same facilities for Virology and Immunology and the Biomedical Research Modular Buildings as the proposed project. Rather than constructing these facilities at the CNPRC, the buildings would be located elsewhere at UC Davis and could be placed within the Central Campus, South Campus, or West Campus areas. To provide adequate reliability for previously approved but not yet completed projects, the proposed utility upgrades would still be needed and constructed as part of this alternative. For this alternative, it is assumed that within the Central Campus, South Campus, or West Campus at UC Davis, adequate building sites could be located that would not need utility upgrades in order to adequately serve the proposed buildings. For this alternative, the Biomedical Research Modular Buildings would be sited together but the Virology and Immunology Building would not need to be sited near the modular buildings and could instead be located at another location.

- **Construction of Reduced Facilities:** This alternative would involve construction of a single building to house all of the Virology and Immunology Building research and the research proposed for the Biomedical Research Modular Buildings. The key elements of this alternative would be to construct a single building of only 10,000 gsf instead of the proposed five buildings totaling 16,000 gsf, and to conduct a reduced amount of research. To provide adequate reliability for previously approved but not yet completed projects, the proposed utility upgrades would still be needed and constructed as part of this alternative. This alternative would have similar environmental effects to the proposed project but at a lower intensity because of the reduced construction impacts, a smaller increase in employee population, and a reduction in operational impacts. The overall reduction in operational impacts would extend to the hazards and biohazardous materials impacts evaluated in this EIR. Overall, the Construction of Reduced Facilities would further reduce the less than significant environmental effects of the project. The project would require the same hazardous materials and bio-containment protocols as the proposed project and would not create any new environmental effects.

2.5 KNOWN AREAS OF CONTROVERSY

Section 15123 of the CEQA Guidelines requires that a summary of an EIR identify areas of controversy known to the Lead Agency, including issues raised by agencies and the public. During the public comment period, two letters were received regarding the proposed project. While no known controversial issues were presented in the letters received, research at the CNPRC is known to be controversial because of the presence of primate research at the facility. None of the proposed buildings would provide housing for animals and the proposed project would not increase the number of laboratory research animals at the CNPRC. However, CNPRC projects typically engender controversy due to the presence of non-human
primate research at the CNPRC, and the potential for controversy is one of the reasons that this Focused Tiered EIR has been prepared. Prior projects have become controversial because of this research and animal rights groups have previously expressed concern over the on-going research at the CNPRC.

One letter presented standard permit requirements from the California Department of Water Resources. The second letter expressed a desire to improve transportation connections to the CNPRC. These issues were considered in the preparation of this Focus Tiered Draft EIR but they do not raise any new potentially significant impacts that were not adequately addressed in the Draft Tiered Initial Study. The comments expressed do not alter the conclusions in the Draft Tiered Initial Study and do not require any additional detailed analysis in this Focused Tiered Draft EIR. The comments and responses to the comments are provided in Appendix B of this Focused Tiered Draft EIR.
3 PROJECT DESCRIPTION

3.1 REGIONAL LOCATION

The approximately 5,300 acre UC Davis campus is located in Yolo and Solano Counties approximately 72 miles northeast of San Francisco, 15 miles west of the City of Sacramento, and adjacent to the City of Davis (see Figure 3.1). The campus is comprised of four campus units: the central campus, the south campus, the west campus, and Russell Ranch. Most academic and extracurricular activities occur within the central campus. The central campus is bounded generally by Russell Boulevard to the north, State Route 113 (SR 113) to the west, Interstate 80 (I-80) and the Union Pacific Railroad tracks to the south, and A Street to the east. The south campus is located south of I-80 and north of the South Fork of Putah Creek. The west campus is bounded by SR 113 to the east, Putah Creek to the south, Russell Boulevard to the north, and extends approximately one-half mile west of County Road 98. The south and west campus units are contiguous with the central campus, and are used primarily for field teaching and research. The approximately 1,600 acre Russell Ranch portion of the campus lies to the west, separated from the west campus by approximately one and one-half miles of privately owned agricultural land. Russell Ranch was purchased in 1990 for campus uses including large-scale agricultural and environmental research, study of sustainable agricultural practices, and habitat mitigation. Russell Ranch is bordered roughly by County Road 96 on the east, Putah Creek on the south, Covell Boulevard on the north, and Russell Boulevard and privately owned agricultural land on the west and northwest.

3.2 PROJECT OVERVIEW

UC Davis proposes to construct five buildings and provide new utility connections to increase the space available for existing and proposed laboratory research and support at the UC Davis California National Primate Research Center (CNPRC). The first building would be approximately 10,000 gross square feet (gsf) and would be constructed to focus on virology and immunology research. The proposed use of biohazardous substances in this building would require that the building be constructed and operated as a biosafety level (BSL) 3 facility.3

The proposed virology and immunology building would encompass 10,000 gsf (6,700 assignable square feet (asf)). The building would include 1,200 asf of office and office support space, 5,300 asf of laboratory space and laboratory support space, and 200 asf of building support space.4 The proposed laboratory space would include approximately 1,100 asf that would be designed as a BSL 3 laboratory suite with containment and operational requirements for research involving potentially infectious agents. The building would be constructed in phases, and the first phase of the building would consist of approximately 5,500 gsf with the BSL 3 laboratory portion of the building comprising approximately 1,100 asf. Space within the first phase would also provide BSL 2 space. See Section 3.5.1 of this Focused Tiered Draft EIR for a definition of biosafety levels.

The second building would be a modular building of approximately 1,500 gsf and would focus on general biomedical research with activities including National Institutes of Health (NIH) supported studies on stem and progenitor cells. The third building would be a modular building of approximately 1,500 gsf and would provide office support for the stem and progenitor cell research laboratory. The fourth building would be approximately 1,500 gsf and would be utilized for general biomedical research. The fifth

3 Biosafety ratings range from Level 1 to Level 4 and indicate the varying degrees of building containment and laboratory precautions that must be followed while conducting research with particular organisms.
4 ASF refers to the actual usable space with a building that can be assigned for use. Excluded from asf are areas such as mechanical rooms, hallways, and service space.
The proposed project includes utility upgrades to serve growth at the CNPRC including the proposed project and projects previously approved at the CNPRC but not yet constructed. The proposed utilities include telecommunications, natural gas, and domestic water mains. These improvements would be installed as part of the proposed project with connections extending west, across County Road 98 to connection points in Hutchison Drive. The proposed utility corridors are shown in Figure 3.

3.3 Project Site

The proposed project site is located within the developed portion of the CNPRC on land formerly used for agriculture and now managed for weed and rodent control. The buildings all would be one-story and would be located in close proximity to similar research buildings and to the CNPRC administration building. Uses surrounding the site include a vacant field area to the north, a parking lot to the east, and CNPRC buildings to the south and west.

3.4 Project Need and Objectives

Virology and Immunology Building
The proposed virology and immunology building would address existing research space needs and would provide expansion space for increased virology and immunology research. Appropriate laboratory space is needed to optimize the existing laboratories at the CNPRC. Staff scientists now work with viruses that must be handled with BSL 2 containment. Given the lack of BSL 3 space, existing working conditions are suboptimal and staff scientists must utilize slow and cumbersome procedures to undertake their research. Construction of the proposed facility will permit consolidation of existing human pathogen research activities in modern BSL 2 and BSL 3 containment laboratories. New space is needed at the CNPRC to address space deficiencies that have resulted from program growth. The project goals are to:

- Address significant deficiencies in availability of appropriate research space.
- Co-locate virology and immunology researchers currently dispersed at the CNPRC and the Center for Comparative Medicine.
- Provide appropriate BSL 2 and BSL 3 facilities and other current technologies that enable researchers to investigate diseases that existing facilities are currently unable to accommodate.
- Improve process efficiencies and increase worker safety by providing appropriate containment facilities.
- Provide appropriate utility connections to the new laboratory buildings to ensure the adequate supply of system utilities.
These goals will be accomplished by providing high-quality research laboratory space, research support space, and office space for faculty, staff, and graduate students in the field of virology and whose research is focused on non-human primate models of human infectious diseases, including AIDS.

Biomedical Research Modular Buildings

The proposed project would provide new space to address existing research space needs (all BSL 2), ease extensive overcrowding within existing laboratories and office space, provide laboratory and office space for current and new employees, and address the needs for growth in research programs in cell and gene-based therapies. New space is needed at the CNPRC to solve significant space deficiencies that have resulted from program growth.

The project goals are to:

- Address significant deficiencies in availability of appropriate research and support space for the current program.
- Provide appropriate laboratories for culture of cells in specific conditions and to enable current, visiting, and new researchers to precisely control cell culture environments.
- Improve processing efficiencies and increase worker safety by providing appropriate facilities and to house essential equipment.
- Provide appropriate utility connections to the new laboratories and office modular buildings to ensure the adequate supply of system utilities.

These goals will be accomplished by providing high-quality research laboratory and support space, and office space for faculty, staff, students, fellows, and visiting faculty and staff that conduct research that addresses stem and progenitor cell therapies for regenerative medicine purposes and the treatment of human disease.

CNPRC Utilities

The proposed project includes utility upgrades to serve growth at the CNPRC including the proposed project and projects previously approved at the CNPRC but not yet constructed. The proposed utilities include telecommunications, natural gas, and domestic water mains. These improvements would be installed as part of the proposed project with connections extending west, across County Road 98 to connection points in Hutchison Drive. The goal of completing these utility proposed utility upgrades is to provide adequate supply and upgrade system reliability at the CNPRC.

3.5 **PROJECT ELEMENTS**

3.5.1 Facility Design

Laboratory Space

To meet the anticipated research requirements the proposed project would be constructed and furnished to conform with the requirements for BSL 2 and BSL 3 as defined in the Centers for Disease Control and Prevention (CDC) publication Biosafety in Biomedical and Biological Laboratories (BMBL). This publication defines four biosafety levels that apply to biohazardous materials operations, depending on the risk posed by the organism involved in the research. Two of the four biosafety levels would be applicable to the proposed project and are further discussed below. Although these biosafety levels were originally intended to protect human health, the CDC Guidelines are widely used to prevent release of animal or human pathogens from laboratories. BSL 2 is appropriate for use with biohazardous materials that are considered to be of ordinary (not special) potential hazard and may produce varying degrees of disease through accidental autoinoculation, ingestion, and skin or mucous membrane exposure. BSL 3 is appropriate for use with agents that can be contracted by the respiratory route and may cause serious or
lethal diseases in humans or animals, or cause moderate economic loss to animal industries. The appropriate controls for a particular laboratory depend not only on the organism being used in the laboratory but also the quantities and concentrations of organisms that will be involved and the hazards associated with proposed use. For example, propagation of infectious agents for vaccine production involves large quantities of organisms in high concentrations. In contrast, as with the proposed project, clinical specimens generally contain very small quantities of infectious agents.

BSL 2 Laboratory

The following requirements apply to BSL 2 facilities:

- Lockable doors must be provided for facilities that house restricted agents.
- Planning for new laboratories should consider locating them away from public areas.
- Each laboratory must contain a sink for handwashing.
- Each laboratory must be designed so that it can be easily cleaned and chairs and other furniture used in laboratory should be covered with a non-fabric material that can be easily decontaminated.
- Laboratory furniture must be capable of supporting anticipated loading and uses. Spaces between benches, cabinets, and equipment must be accessible for cleaning.
- Biological safety cabinets should be installed in such a manner that fluctuations of the room supply and exhaust air do not cause the biological safety cabinets to operate outside their parameters for containment. Biological safety cabinets should be located away from doors, from windows that can be opened, from heavily traveled laboratory areas, and from other potentially disruptive equipment so as to maintain the air flow parameters for containment.
- An eyewash station must be readily available.
- Illumination must be adequate for all activities, avoiding reflections and glare that could impede vision.
- There are no specific ventilation requirements. However, planning of new facilities should consider mechanical ventilation systems that provide an inward flow of air without recirculation to spaces outside of the laboratory. If the laboratory has windows that open to the exterior, they must be fitted with fly screens.

BSL 3 Laboratory

The following requirements apply to BSL 3 facilities:

- The laboratory must be separated from areas that are open to unrestricted traffic flow within the building, and access to the laboratory must be restricted. Passage through a series of two self closing doors is the basic requirement for entry into the laboratory from access corridors. Doors must be lockable. A clothes change room may be included in the passageway.
- The interior surfaces of walls, floors, and ceilings of areas where BSL 3 agents are handled must be constructed for easy cleaning and decontamination. Seams, if present, must be sealed. Walls, ceilings, and floors should be smooth, impermeable to liquids and resistant to the chemicals and disinfectants normally used in the laboratory. Floors should be monolithic and slip resistant. Consideration should be given to the use of coved floor coverings. Penetrations in floors, walls, and ceiling surfaces must be sealed. Openings such as around ducts and the spaces between doors and frames must be capable of being sealed to facilitate decontamination.
- Laboratory furniture must be capable of supporting anticipated loading and uses. Spaces between benches, cabinets, and equipment must be accessible for cleaning. Chairs and other furniture used in laboratory work should be covered with a non-fabric material that can be easily decontaminated. Bench tops must be impervious to water and resistant to moderate heat and the organic solvents, acids, alkalis, and those chemicals used to decontaminate the work surfaces and equipment.
- All windows in the laboratory must be closed and sealed.
A method for decontaminating all laboratory wastes must be available in the facility and utilized, preferably within the laboratory (i.e., autoclave, chemical disinfection, incineration, or other approved decontamination method). Consideration should be given to means of decontaminating equipment. If waste is transported out of the laboratory, it should be properly sealed and not transported in public corridors.

A ducted exhaust air ventilation system must be provided. This system creates directional airflow which draws air into the laboratory from "clean" areas and toward "contaminated" areas. The exhaust air must not be recirculated to any other area of the building. Filtration and other treatments of the exhaust air are not required, but may be considered based on site requirements, and specific agent manipulations and use conditions. The outside exhaust must be dispersed away from occupied areas and air intakes, or the exhaust must be HEPA-filtered. Laboratory personnel must verify that the direction of the airflow (into the laboratory) is proper. It is recommended that a visual monitoring device that indicates and confirms directional inward airflow be provided at the laboratory entry. Consideration should be given to installing an HVAC control system to prevent sustained positive pressurization of the laboratory. Audible alarms should be considered to notify personnel of HVAC system failure.

HEPA-filtered exhaust air from a Class II biological safety cabinet can be recirculated into the laboratory if the cabinet is tested and certified at least annually. When exhaust air from Class II safety cabinets is to be discharged to the outside through the building exhaust air system, the cabinets must be connected in a manner that avoids any interference with the air balance of the cabinets or the building exhaust system (e.g., an air gap between the cabinet exhaust and the exhaust duct). When Class III biological safety cabinets are used they should be directly connected to the exhaust system. If the Class III cabinets are connected to the supply system, it must be done in a manner that prevents positive pressurization of the cabinets. Biological safety cabinets are required and must be located away from doors, from room supply louvers, and from heavily-traveled laboratory areas.

Continuous flow centrifuges or other equipment that may produce aerosols must be contained in devices that exhaust air through HEPA filters before discharge into the laboratory. These HEPA systems must be tested at least annually. Alternatively, the exhaust from such equipment may be vented to the outside if it is dispersed away from occupied areas and air intakes.

Vacuum lines must be protected with liquid disinfectant traps and HEPA filters, or their equivalent. Filters must be replaced as needed. An alternative is to use portable vacuum pumps (also properly protected with traps and filters).

An eyewash station must be readily available inside the laboratory. Each laboratory room must contain a sink for hand washing. The sink must be hands-free or automatically operated and located near the room exit door.

Illumination must be adequate for all activities, avoiding reflections and glare that could impede vision.

The BSL 3 facility design and operational procedures must be documented. The facility must be tested for verification that the design and operational parameters have been met prior to operation. Facilities should be re-verified, at least annually, against these procedures as modified by operational experience.

To meet these requirements, the proposed BSL 3 laboratory would be physically separated from the exterior and from other areas of the building. The laboratories would be provided with a ducted exhaust air ventilation system that would draw air from “clean” areas into the laboratory and the exhaust from the laboratory would be HEPA-filtered to prevent release of infectious organisms into the environment. Laboratory procedures that could generate aerosols containing infectious organisms would be performed in biosafety cabinets, which would contain any aerosols produced and would include HEPA filters for exhaust air. All laboratory waste, including specimens, would be decontaminated by treatment in an
autoclave before being removed from the BSL 3 area. To prevent infectious organisms from traveling out of the laboratory into the environment on workers’ clothing, workers would change into protective clothing before entering the laboratory and would remove protective clothing in the de-gowning room before entering the changing room. Used protective clothing would be decontaminated in an autoclave before disposal or laundering for re-use. The floors, ceilings, and wall surfaces would be constructed for easy cleaning and decontamination and the benchtops would be impervious to water and resistant to heat and chemicals. In addition, all penetrations through floor coverings and wall surfaces would be sealed. The project would comply with applicable elements of the UC Davis Biosafety Program. The UC Davis Office of Environmental Health and Safety (EH&S) Biosafety Officer will review the project plans during project design to ensure that the BSL 3 laboratory conforms to the requirements for BSL 3 as outlined in the CDC standards. The EH&S Biosafety Officer also will review the project for conformance with sections of the campus design guidelines pertaining to laboratories, including biosafety cabinet specifications. The EH&S Biosafety Officer would inspect the facility during construction and would be responsible for certifying that the laboratory is consistent with the CDC standards and that it is suitable for use.

In compliance with UC Davis policy, the research program would obtain a Biological Use Authorization (BUA) for the work that would be performed using infectious organisms, subject to approval by the Biological Safety Administrative Advisory Committee (BSAAC). Consistent with the UC Davis Biosafety Program, the laboratory would be inspected annually by the EH&S Biosafety Officer to verify compliance with all policies and procedures outlined in the UC Davis Biosafety Manual and with all applicable federal and state standards and requirements. The biosafety cabinets would also be tested and certified on an annual basis. Following UC Davis policy, appropriate training would be required for all employees working in the laboratory.

Office Space
To provide the necessary office space for research personnel, two modular office buildings will be sited adjacent to the two modular laboratory buildings. These units will meet or exceed all state and local code requirements including NFPA and ADA. Each office unit will contain 4-5 private offices furnished with desks, bookcases, and work tables. An additional six work stations will be located within a central common area for use by graduate students and research technicians. A conference/meeting room will be located within each unit to provide a collaborative space for research scientists, students, fellows, and staff.

3.5.2 Buildings
The proposed project includes construction of the five buildings summarized below. In total, the proposed project would provide approximately 16,000 gsf of new space.

- **Building 1**: At build-out, the approximately 10,000 gsf virology and immunology building will consist of approximately 6,700 asf which includes approximately 1,100 asf of BSL 3 space, 4,300 asf for BSL 2 molecular biology and tissue culture laboratories, and 1,100 asf of office and conference room space, and approximately 200 asf of building support space.
- **Building 2**: Building 2 will consist of 1,500 gsf and will be a single-story modular building primarily used as laboratory space. This space will include six BSL 2 (each lab with 210 asf of space) for cell culture, molecular biology, cell cryopreservation, and associated processing, storage, and equipment, and one 220-asf flow cytometry laboratory.
- **Building 3**: Building 3 will consist of 1,500 gsf and will be a single-story modular building that would primarily be used as office space with 475 asf of office space for graduate students and research technicians, five 125-asf offices for project and visiting scientists, fellows, collaborators, and administrative personnel, and one 400-asf conference/meeting room.
• **Building 4**: Building 4 will consist of 1,500 gsf and will be a single-story modular building that would primarily be used as laboratory space. This space will include six BSL 2 wet labs (each lab with 210 asf of space) for cell culture, molecular biology, and associated processing and storage and one 220-asf cell culture and sorting laboratory.

• **Building 5**: Building 5 will consist of 1,500 gsf and will be a single-story modular building that would primarily be used as office space with 600 asf of office space for students, fellows, and technicians, four 125-asf offices for project and visiting scientists and collaborators, and one 400-asf meeting/lecture room.

3.5.3 Landscaping
No landscaping removal or tree removal will take place in order to accommodate the proposed buildings. After completion, landscaping around the perimeter of each building will be included in the building site improvements.

3.5.4 Parking and Roadways
No additional parking or roadway construction will take place with the proposed project.

3.5.5 Utilities and Infrastructure
As discussed briefly below and analyzed in Section 4.15 of the Tiered Initial Study (Appendix A), the proposed project would require connections to campus utilities and infrastructure including domestic water, sanitary sewer, storm drainage, electricity, natural gas, and telecommunications.

• **Domestic Water**: The proposed project would extend a water main from the east side of Country Road 98 westward into the CNPRC area to serve the proposed project, future development and to improve the reliability to previously approved facilities that have not been constructed. The new water service would include service distribution pipes to individual buildings throughout the CNPRC.

• **Sanitary Sewer**: The proposed buildings would connect to the existing wastewater pipes located throughout the CNPRC. No upgrade of the wastewater system would be needed to serve the buildings.

• **Storm Drainage**: The proposed project would include revisions to the site drainage at each building site to provide adequate drainage away from each building and into the CNPRC drainage system. No upgrade of the CNPRC drainage system would be required.

• **Electricity**: The proposed project would connect to existing electrical service within the CNPRC. No upgrade to the electrical system would be needed.

• **Natural Gas**: The existing service at the CNPRC is not adequate to serve the proposed project and a system upgrade would be provided by extending a new natural gas service main from the east side of County Road 98 westward into the CNPRC developed area. The new service main would then connect to existing gas distribution lines and new distribution lines to the proposed project and future projects within the CNPRC including previously approved projects that have not been constructed.

• **Telecommunications**: New telecommunication service would be provided by extending a new telecommunication line from the east side of County Road 98 westward into the CNPRC developed area. The new line would then connect to existing and future buildings in order provide increased telecommunications services to the CNPRC including previously approved projects that have not been constructed.

3.5.6 Sustainable Design Elements
The proposed project would comply with the Regental Policy on Green Building Design and Clean Energy Standards, and would meet the campus baseline as applicable to the project.
3.5.7 Population
The proposed project would add approximately 20 people to the campus population. All of the new employees would work at the CNPRC.

3.6 Construction Schedule and Staging
Construction of the proposed project is anticipated to begin in spring or summer of 2007 and end in 2009 or early 2010. Construction staging and contractor parking associated with the proposed project would occur adjacent to each construction site.
4 Environmental Setting, Impacts, and Mitigation Measures

4.1 Introduction

This section of the Focused Tiered Draft EIR presents potential hazardous materials impacts of the proposed UC Davis CNPRC 2007 Research Laboratory Project. The scope of the analysis and key attributes of the analytical approach are presented below to assist readers in understanding the manner in which the impact analysis has been conducted in this Focused Tiered Draft EIR.

The preparation of this Focused Tiered Draft EIR was preceded by the Tiered Initial Study for the CNPRC 2007 Research Laboratory Project (included in Appendix A) which determined that an EIR would be prepared to consider potential project impacts to Hazards and Hazardous Materials.

This chapter examines potential impacts related to Hazards and Hazardous Materials, presenting the environmental setting, regulatory setting, standards of significance, methodology of the analysis, impacts of the proposed project on the environment, and proposed measures to mitigate the significant impacts.

The environmental setting subsections provide an overview of the existing physical environmental conditions at the time the NOP was issued. Much of this information is incorporated by reference from the LRDP EIR, from which this EIR is tiered. The environmental setting is the environmental baseline to which the proposed project is compared to determine its impacts. The regulatory setting subsections identify the environmental laws and regulations that are relevant to each topical section. They describe required environmental permits and other approvals necessary to implement the proposed project. Standards of significance are identified for each environmental issue. These standards are the thresholds used to determine whether implementing the project would result in a significant environmental impact.

Impacts are presented for each environmental issue, and a significance determination is provided at the end of each discussion. For each impact identified in the analysis, significance is expressed as one of three determinations: no impact, less than significant, or significant. A significant impact is defined under CEQA as a substantial adverse change to the environment. The analysis in this EIR determined that no project-specific significant impacts would result and that no project-specific mitigation measures were required.

4.2 Scope of the EIR

4.2.1 Definition of Baseline

The environmental setting consists of the physical environmental conditions at the time the NOP for this Focused Tiered Draft EIR was released, in October 2006.

4.2.2 Definition of Study Area

For Hazards and Hazardous Materials, the extent of the environmental setting area evaluated (the study area) is primarily the proposed buildings utilizing hazardous materials and roads throughout the UC Davis campus that are used to transport hazardous materials.

4.2.3 Basis of Impact Analysis

The analysis of impacts in this Draft EIR is based upon the location and magnitude of effect that is projected to occur as a result of the implementation of the project. Impacts are evaluated in terms of changes to existing conditions that would be caused by the proposed project. For Hazards and Hazardous
Materials, the conditions that would result from implementation and operation of the project at full capacity are compared to baseline conditions to characterize the change.

4.2.4 CUMULATIVE IMPACTS

The CEQA Guidelines, Section 15130, require that an EIR discuss cumulative impacts of a project when the project’s incremental effect is “cumulatively considerable.” According to Section 15065, “cumulatively considerable” means the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and effects of probable future projects as defined in Section 15130. Pursuant to Section 15130 of the CEQA Guidelines, “(t)he discussion of cumulative impacts shall reflect the severity of the impacts and their likelihood of occurrence, but the discussion need not provide as great detail as is provided for the effects attributable to the project alone. The discussion should be guided by the standards of practicality and reasonableness, and should focus on the cumulative impacts to which the identified other projects contribute rather than the attributes of other projects which do not contribute to the cumulative impact.”

Mitigation measures are to be developed to reduce the project’s contribution to significant cumulative effects whenever feasible. The CEQA Guidelines acknowledge that sometimes the only feasible method for mitigating or avoiding significant cumulative effects is to adopt ordinances or regulations that apply to all projects that contribute to the cumulative effect. Further, there must be a fair and reasonable relationship between the project’s contribution to a significant effect and its level of mitigation. Also, Section 15130(a)(3) of the CEQA Guidelines states that an EIR may determine that a project’s contribution to a significant cumulative impact will be rendered less than cumulatively considerable, and thus not significant, if a project is required to implement or fund its fair share of a mitigation measure or measures designed to alleviate the cumulative impact.

The 2003 LRDP EIR evaluated the cumulative environmental impacts of campus activities, development of facilities, and population growth that would occur because of growth under the 2003 LRDP through the 2015–2016 academic year together with other regional development. Expansion of research laboratory facilities at the CNPRC was part of the overall campus expansion proposed in the 2003 LRDP. The Initial Study identified Hazards and Hazardous Materials from hazardous chemicals and biohazardous materials that would be evaluated in the Focused Tiered Draft EIR and they are defined in Section 4.3.4, below.

The 2003 LRDP EIR concluded that the Hazards and Hazardous Materials impacts would be less-than-significant during the implementation period of the 2003 LRDP and would not contribute to cumulatively considerable impacts. This EIR analyzes the proposed project, which is part of the growth identified in the LRDP, to see if that conclusion remains correct.
4.3 HAZARDS & HAZARDOUS MATERIALS

4.3.1 Background

This section addresses the potential effects of the proposed project on hazards and hazardous materials, focusing on evaluating the use and generation of hazardous chemicals and waste and generation of biohazardous materials and waste associated with the proposed project. All other hazards and hazardous materials impacts and other environmental impacts are adequately addressed in the Tiered Initial Study (Appendix A) prepared for this project. All relevant background information from the 2003 LRDP EIR, including applicable environmental and regulatory setting standards of significance, and mitigation measures identified in Section 4.7 of the 2003 LRDP EIR, is incorporated by reference and summarized below as appropriate. Section 4.7 of the 2003 LRDP EIR is available in Volume I, page 4.7-1 of the 2003 LRDP EIR and at: http://www.ormp.ucdavis.edu/environreview/onlinedocs/lrdpeir/4.07_hazmat.pdf

A variety of hazardous materials are used on campus during the course of daily operations. Hazardous chemicals used on campus include: chemical solvents, reagents, and aromatic hydrocarbons that are used in campus laboratories; pesticides, fungicides, and herbicides used by agricultural programs and in landscape maintenance; gasoline and diesel fuels, oils and lubricants, antifreeze, cleaning solvents and corrosives, paints and paint thinners, and freon refrigerants used in vehicle and building maintenance. In addition, biohazardous materials are used in teaching and research activities. The use of hazardous materials on campus generates hazardous byproducts that must eventually be handled and disposed of as hazardous wastes.

Generation, transportation, and disposal of hazardous wastes are regulated by various agencies. The lead federal regulatory agency is the Environmental Protection Agency. The State Department of Toxic Substances Control (DTSC) has primary state regulatory responsibility but can delegate enforcement authority to local jurisdictions that enter into agreements with the state agency, as it did with Yolo County Department of Environmental Health (YCDEH) under the Certified Unified Program Agency (CUPA) program.

The campus’ Office of Environmental Health and Safety (EH&S) coordinates most local, state, and federal regulatory compliance functions related to the campus’ health, safety, and environmental issues. EH&S performs safety education and training, regulatory interpretation and applicability, approval of potentially hazardous procedures, resolution of safety problems, surveillance, and monitoring. In addition, EH&S provides guidance for several campus safety programs, including: the Chemical Inventory System, which tracks inventory and use of hazardous materials on campus; the CUPA Self-Audit Program, which complies with the terms of an agreement with the YCDEH; development of laboratory-specific Chemical Hygiene Plans; the Radiation and X-Ray Safety Programs; and the Biological Safety Administrative Advisory Committee. EH&S is also a working partner in such campus administrative advisory groups as the Chemical Safety Committee, the Radiation Safety Committees, the Animal Use and Care Committee, and the Biological Safety Committee. External administrative and benchmarking reviews of the EH&S programs are conducted periodically to identify means of further improving the programs. Benchmarking performed by the Campus Safety, Health, and Environmental Management Association (CSHEMA) in 2000 honored the UC Davis EH&S with a “Unique or Innovative Program Award” for its daily on-call program.
4.3.2 2003 LRDP EIR Standards of Significance

Hazards and hazardous materials impacts would be significant if the project would:

- Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials.
- Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.
- Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within ¼ mile of an existing or proposed school.
- Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, create a significant hazard to the public or the environment.
- For a project within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, result in a safety hazard for people residing or working in the project area.
- Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan.

Additional standards from the CEQA Guidelines’ Environmental Checklist (“f” and “h” in the checklist below) were found not applicable to campus growth under the 2003 LRDP.

4.3.3 Impact Assessment Methods

The hazards and hazardous materials analysis for the proposed project is tiered from the discussion presented in Section 4.7 of the 2003 LRDP EIR. Additional analysis presented here focuses on the use and generation of hazardous chemicals and waste and generation of biohazardous materials and waste. This impact assessment includes consideration of the typical issues related to hazardous chemicals and biohazardous materials for proposed laboratories and project-specific practices that could result from the operation of the proposed buildings and the proposed research program for each building.

For hazardous chemicals, an impact analysis to confirm the finding of less-than-significant was conducted using interviews with staff from the CNPRC and the UC Davis Environmental Health and Safety staff to review compliance with hazardous chemical requirements, accidental exposures or releases of hazardous chemicals, and adequacy of current policies for hazardous chemical use.

For biohazardous materials, the proposed laboratory design and material handling protocols were reviewed by the campus biosafety officer to ensure that the proposed project would comply with biohazardous materials requirements. In addition, records from the CNPRC biosafety laboratories were reviewed to determine whether any biosafety containment protocols were inadequate or in need of revision in order to ensure adequate use, disposal, and transport of biohazardous materials.
4.3.4 Project Impacts and Mitigation Measures

Impacts Adequately Analyzed at the LRDP Level or Not Applicable to the Project

As determined in the Tiered Initial Study for the project, the potential impacts to Hazards and Hazardous Materials were adequately analyzed in the 2003 LRDP EIR and were found to be less than significant. Even though these impacts were found to be less-than-significant, the 2003 LRDP EIR included mitigation measures to further reduce the significance of these impacts. The Tiered Initial Study found that 2003 LRDP EIR Impacts 4.7-1, 4.7-2, 4.7-3, 4.7-4, 4.7-5, 4.7-6, 4.7-8, 4.7-9, 4.7-12, and 4.7-17 and corresponding 2003 LRDP EIR Mitigation Measures 4.7-1, 4.7-2 (a & b), 4.7-3 (a & b), 4.7-4 (a-c), 4.7-5 (a & b), 4.7-6 (a & b), 4.7-8, 4.7-9, 4.7-12, and 4.7-17 are relevant to the proposed project and reduce the significance of hazards and hazardous materials impacts to the extent feasible. Pages 50 to 57 of the Tiered Initial Study (Appendix A) contain the full text of these impacts and mitigation measures and includes explanations of the relevancy of each impact to the proposed project. The Tiered Initial Study further explains that for hazardous chemicals and biohazardous materials, focused analysis would be conducted in this Focused Tiered Draft EIR regarding the use, generation, disposal, and risk of accidental release of hazardous chemicals and biohazardous materials due to the proposed project.

Potentially Significant Project Level Impacts

Impact 4.3.1. Hazardous Chemicals Transport, Use and Disposal. Transport, use and disposal of hazardous chemicals would increase as a result of the proposed project, but the increases would be minor and would be within the levels forecast by the 2003 LRDP EIR. This impact is considered less than significant.

The 2003 LRDP EIR found that implementation of the 2003 LRDP would increase routine hazardous chemical use (Impact 4.7-1), routine generation of hazardous chemical wastes (Impact 4.7-2), and routine hazardous materials transport to and from the campus (Impact 4.7-8) by UC Davis laboratories, departments, and maintenance/support operations, which would not create significant hazards to the public or the environment. The campus achieves a high level of compliance with regulatory standards and campus policies relevant to use, transport, and disposal of hazardous materials, as discussed further in the ‘Setting’ subsection to Section 4.7 of the 2003 LRDP EIR. Hazardous waste treatment, storage, and disposal facilities currently have available capacity to accept and safely manage UC Davis chemical waste.

Laboratories at the CNPRC typically achieve a very high level of compliance with hazardous materials requirements and have an extensive track record of being in full compliance with staff training programs for hazardous materials requirements. Training and documentation of training at the CNPRC is extremely extensive and rigorous because of the intensive research programs within individual laboratories. In addition, the presence of research animals at the CNPRC has resulted in an organizational culture that assigns a high-priority to procedures and protocols that are highly technical, fully documented, and strictly followed. The proposed project would result in increased transport, use, and disposal of hazardous chemicals but the chemicals that would be used are typical of the chemicals that are used in biological research laboratories. These chemicals are used on a daily basis at the CNPRC and would require no changes to the handling procedures, employee training, or facility requirements at the CNPRC (Sarason 2007). The proposed research laboratories would increase the transport, use, and disposal of hazardous materials but these increases constitute a continuation of typical operations at the CNPRC. This impact is considered less than significant.

The campus will continue to implement relevant safety programs and meet relevant standards regarding hazardous materials use, transport, and waste management for the proposed project, as well as for other
projects proposed under the 2003 LRDP. Therefore, these project-level impacts would be less than significant. To ensure that safety policies continue to be implemented and to further reduce the significance of these impacts, LRDP Mitigations 4.7-1, 4.7-2(a-b), and 4.7-8 are applicable to the proposed project as identified in the Tiered Initial Study (Appendix A).

Impact 4.3.2 Hazardous Chemicals Risk of Accidental Release. Risk of accidental release of hazardous chemicals would increase as a result of the proposed project, but the increases would be minor and would be within the levels forecast by the 2003 LRDP EIR. This impact is considered less than significant.

The 2003 LRDP EIR found that implementation of the 2003 LRDP would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment (Impact 4.7-9). Compliance with all applicable federal and state laws, as well as campus programs, practices, and procedures related to the transportation, storage, and use of hazardous materials, would continue for the proposed project as well as other projects proposed under the 2003 LRDP, minimizing the potential for an accidental release of hazardous materials and providing for prompt and effective cleanup if an accidental release occurs. To ensure continued compliance with relevant laws and campus policies and to further reduce this less-than-significant impact, the LRDP Mitigation 4.7-9 (implementing the appropriate hazardous materials procedures) is applicable to the proposed project as identified in the Tiered Initial Study (Appendix A).

Existing schools within ¼ mile of campus include Martin Luther King High School on B Street in downtown Davis; Emerson Junior High School on Calaveras Avenue; Rivendell Nursery School; Parkside Children’s House (formerly Davis Montessori School); Redbud Montessori School north of the west campus; the Grace Valley Christian Academy on County Road 98; and the Fairfield Elementary School on Russell Boulevard at County Road 96. The only school within ¼ mile of the project site is the Grave Valley Christian Academy on County Road 98. There are no proposed new Davis Joint Unified School District (DJUSD) school sites within ¼ mile of the campus boundaries. The future west campus neighborhood is planned to include DJUSD elementary and high school facilities on the campus. Childcare centers are currently located on the campus approximately 2 miles from the proposed project.

Although hazardous materials associated with the proposed the Virology and Immunology Building and the proposed modular buildings could be handled within ¼ mile of existing and proposed schools and childcare centers, these materials would not be handled in quantities sufficient to pose a risk to occupants of the schools or to members of the campus and surrounding community. The potential consequences of an accidental release would be limited to the individual laboratory where the spill occurred, and people outside the buildings would not be exposed. The proposed project would result in increased risk of accidental release of hazardous chemicals because of the increased use of these chemicals. As described for Impact 4.3.1, the chemicals that would be used are typical of the chemicals that are used in biological research laboratories. On-going hazardous materials policies and protocols at the CNPRC have resulted in a highly trained group of employees that are accustomed to following detailed procedures for hazardous materials to prevent accidental spills. These procedures are followed regularly at the CNRPC and during prior auditing by the Yolo County Department of Health have resulted in full compliance and no violations. In the event of an accidental spill, laboratory procedures clearly explain the required steps to initiate cleaning of spilled materials and within a research laboratory, these procedures prevent release of any materials to the outside environment (Sarason 2007). The chemicals that would be used for the proposed project are used on a daily basis at the CNPRC and would require no changes to the handling procedures, employee training, or facility requirements at the CNPRC. Therefore, the impact of accidental release of hazardous materials would be less than significant.
Impact 4.3.3 Biohazardous Materials Transport, Use, and Disposal. Transport, use, and disposal of biohazardous materials would increase as a result of the proposed project, but the increases would be minor and would be within the levels forecast by the 2003 LRDP EIR. This impact is considered less than significant.

The 2003 LRDP EIR found that implementation of the 2003 LRDP would increase routine use of biohazardous materials (LRDP Impact 4.7-5) and routine generation of biohazardous waste (LRDP Impact 4.7-6) by UC Davis laboratories, departments, and maintenance/support operations, which would not create significant hazards to the public or the environment. The campus achieves a high level of compliance with regulatory standards and campus policies relevant to use, transport, and disposal of biohazardous materials, as discussed further in the ‘Setting’ subsection to Section 4.7 of the 2003 LRDP EIR.

The use of biohazardous materials at UC Davis would increase as a result of the proposed project. The potential impact of this increased use on employee health, the public, and the environment is considered less than significant because, as explained in more detail below, regulatory requirements and the current campus guidelines and practices for controlling employee exposures to infectious agents would be followed, which would also minimize the potential impacts to the public from biohazardous materials used in the proposed research facilities.

To ensure that laboratory workers do not carry pathogens out of the laboratory on their skin or clothing, campus policy and CDC guidelines for BSL-3 laboratories require that workers wear protective clothing; the used clothing is removed in a gown-out area and decontaminated in an autoclave before re-use or disposal. BSL-3 laboratories must also have a sink for hand washing near the exit; depending on the risk involved, workers may also be required to shower after exiting the laboratory and before entering the changing room where they change into their street clothing. Furthermore, the quantities of infectious organisms handled in the proposed BSL 3 laboratory would be relatively small compared, for example, to a laboratory growing virus for vaccines.

Laboratory equipment that could generate aerosols, such as shakers and centrifuges, would be sealed or contained during use. In the laboratory, aerosols are deposited in relatively short distances from point sources. Potential aerosol emissions, if not controlled by a biosafety cabinet, are controlled by splash guards and decontamination of surrounding work surfaces. Given the small quantities of infectious organisms handled in the laboratory and the controls on aerosol releases, the potential that any aerosols would be released from the laboratory carrying pathogens in sufficient quantities to reach an animal or a person outside the laboratory and cause disease, would be extremely low and would be further reduced by the design features of the facility described below in the discussion for Impact 4.3.4.

Biohazardous waste generated at the proposed laboratory, including specimens, workers’ disposable protective clothing and sharp objects such as needles, scalpels, and broken glass, would be treated in an autoclave or approved bleaching solution before it leaves the laboratory. Once treated, the waste would be considered non-hazardous waste (unless it also contains hazardous chemicals) and would be sent to the campus landfill or the campus wastewater treatment plant. Hazardous waste disposal of autoclaved materials would take place in conformance with applicable regulations for the transport and disposal of hazardous waste which could include transport to an authorized hazardous waste landfill. The project also incorporates elements to ensure that the pathogens held in the BSL 3 facilities are secure. Access to the BSL 3 facilities would be controlled by a card reader for authorized staff only. Based on these factors, the transport, use, and disposal of biohazardous materials would be similar to the activities evaluated in the 2003 LRDP EIR and the potential impact would remain less than significant.
To further reduce the less-than-significant impact associated with the handling of biohazardous materials, the campus shall implement LRDP Mitigation 4.7-5(a) and (b). Safety policies will continue to be implemented to further reduce the significance of these impacts through LRDP Mitigations 4.7-5 (a) and (b) and 4.7-6 (a) and (b).

Impact 4.3.4 Biohazardous Materials Risk of Accidental Release. Risk of accidental release of biohazardous materials would be minor and would be within the levels forecast by the 2003 LRDP EIR. This impact is considered less than significant.

As discussed above for impact 4.3.3, the existing biohazard practices for facility design and operation are expected to result in less-than-significant impacts from the transport, use, and disposal of biohazardous materials. The potential risk of accidental release of biohazardous materials is a risk that would increase because of the increased use of biohazardous materials, but the expected increase would be less-than-significant because of the on-going campus practices and the project design details described below.

To ensure that laboratory workers do not carry pathogens out of the laboratory on their skin or clothing, campus policy and CDC guidelines for BSL-3 laboratories require that workers wear protective clothing; the used clothing is removed in a gown-out area and decontaminated in an autoclave before re-use or disposal. BSL-3 laboratories must also have a sink for hand washing near the exit; depending on the risk involved, workers may also be required to shower after exiting the laboratory and before entering the changing room where they change into their street clothing. Furthermore, the quantities of infectious organisms handled in the proposed BSL 3 laboratory would be relatively small compared, for example, to a laboratory growing virus for vaccines.

Engineering controls and laboratory practices that would be implemented in compliance with UC Davis policy and federal and state regulations would minimize the potential for an accidental release of aerosols containing pathogens. Current CDC guidelines and campus policies require that if BSL-2 or BSL-3 materials are involved, these research activities must be conducted in biosafety cabinets, which contain aerosols and filter all released air to remove biohazardous materials. The project includes HEPA air filtration. HEPA-filtered ventilation systems and biological safety cabinets are tested and certified annually by an external contractor and EH&S retains records of these tests. Most HEPA filters for biosafety cabinets recirculate air into laboratories and must achieve a minimum efficiency of 99.97 percent in screening out particles at 0.3 micron in size (DOE 1997). Most airborne viruses are smaller than 0.3 micron; however, they do not usually travel alone but on a host bacteria, water droplet, or dust particle, which HEPA filters very effectively remove. As particle size increases above 0.3 micron in size, collection in the HEPA filter becomes more efficient as the greater particle mass increases collection by interception by the filter media or impaction on the filter media. HEPA filter particle removal efficiency does not decrease greatly for particle sizes below 0.3 micron, and for particle sizes significantly smaller (about 0.1 micron and less), collection efficiency is actually better than for 0.3-micron particles because ______ (Lee and Liu 1980). Therefore, HEPA filters effectively remove biohazardous particles. Filters are chemically decontaminated before they are removed for disposal.

The following measures would further ensure that infectious agents would not escape the laboratory. The proposed project also includes cascading and constantly maintained negative pressure from the entry door to the central clean corridor to the preparation rooms to the procedure rooms. Furthermore, all joints in the walls, floors, and ceilings would be sealed, and doors would be checked for air tightness. Design, construction, and operation of the BSL 3 facility would include a detailed commissioning process with review by a commissioning agent experienced in the commissioning of BSL 3 facilities.
Laboratory equipment that could generate aerosols, such as shakers and centrifuges, would be sealed or contained during use. In the laboratory, aerosols are deposited in relatively short distances from point sources. Potential aerosol emissions, if not controlled by a biosafety cabinet, are controlled by splash guards and decontamination of surrounding work surfaces. Given the small quantities of infectious organisms used handled in the laboratory and the controls on aerosol releases, the potential that any aerosols would be released from the laboratory carrying pathogens in sufficient quantities to reach an animal or a person outside the laboratory and cause disease, would be extremely low and would be further reduced by the negative airflow into the BSL 3 rooms, HEPA filtering, and the practices for materials and people exiting the facility.

The project also incorporates elements to ensure that the pathogens held in the BSL 3 facilities are secure. Access to the BSL 3 facilities would be controlled by a card reader for authorized staff only. Therefore, the potential hazard of unauthorized persons accessing the laboratories would be less than significant.

Biohazardous waste generated at the proposed laboratory, including specimens, workers’ disposable protective clothing and sharp objects such as needles, scalpels, and broken glass, would be treated in an autoclave or approved bleaching solution before it leaves the laboratory. Once treated, the waste would be considered non-hazardous waste (unless it also contains hazardous chemicals) and would be sent to the campus landfill or the campus wastewater treatment plant. Hazardous waste disposal of autoclaved materials would take place in conformance with applicable regulations for the transport and disposal of hazardous waste which could include transport to an authorized hazardous waste landfill. Therefore, the risk of accidental release of biohazardous materials would be similar to the risk evaluated in the 2003 LRDP EIR and the potential impact would remain less than significant.

To further reduce the less-than-significant impact associated with the handling of biohazardous materials, the campus shall continue to implement LRDP Mitigation 4.7-5(a) and (b). Safety policies will continue to be implemented to further reduce the significance of these impacts through LRDP Mitigations 4.7-5 (a) and (b) and 4.7-6 (a) and (b).

4.3.5 Cumulative Impacts and Mitigation Measures

The cumulative impacts related to hazardous materials associated with development expected under the 2003 LRDP are discussed in Section 4.7, page 4.7-64 of the 2003 LRDP EIR. LRDP Impact discussion 4.7-18 concludes that the potential hazardous materials and biohazardous materials impacts from 2003 LRDP growth would be a less than significant impact and no mitigation would be required. The hazardous chemicals and biohazardous materials issues evaluated in this Focused Tiered Draft EIR were determined to not result in a significant impact to the environment. There has been no change in the conclusion regarding cumulative hazardous materials and biohazardous materials impacts that could result from the proposed project and the full implementation of the 2003 LRDP. Nothing in the proposed project would exceed the CNRPC laboratory protocols or the UC Davis Environmental Health and Safety capabilities as explained in this Focused Tiered Draft EIR and the 2003 LRDP EIR. Accordingly, the proposed project would not result in cumulatively considerable hazardous materials impact from hazardous materials or biohazardous materials.

Cumulative effects of environmental issues evaluated in the Tiered Initial Study (Appendix A) for the proposed project are adequately addressed in the Tiered Initial Study.
5 OTHER CEQA REQUIRED SECTIONS

5.1 GROWTH-INDUCING IMPACTS

As required by CEQA, an EIR must discuss the ways in which the proposed project could directly or indirectly foster economic or population growth or the construction of additional housing and how that growth could, in turn, affect the environment (CEQA Guidelines Section 15126[g]). Growth can be induced in a number of ways, including by eliminating obstacles to growth and stimulating economic activity outside of the project. Potential growth inducement because of the proposed project would be related to the improvement of utility infrastructure and whether the improvements would allow removal of infrastructure limitations and contribute to growth. Under CEQA, induced growth is not necessarily considered beneficial or detrimental. Induced growth is considered a significant impact only if it has a significant effect on the environment. The proposed utility upgrades would allow more development than currently exists but would not exceed the development levels anticipated in the 2003 LRDP and evaluated in the 2003 LRDP EIR. Therefore, the utility upgrades would enable growth but would not induce growth beyond the previously planned levels.

5.2 SIGNIFICANT AND UNAVOIDABLE IMPACTS

CEQA requires that an EIR identify any significant impacts that cannot be reduced to a less than-significant level through mitigation (CEQA Guidelines Section 15126.2[b] and Public Resources Code Section 21000[b]). The proposed project would not cause any project-level significant and unavoidable environmental impacts, but would contribute to significant and unavoidable cumulative impacts.

As described in Section 4.5 of the Tiered Initial Study (Appendix A, p.19), the proposed project would not contribute to significant and unavoidable cumulative impacts identified in the 2003 LRDP EIR related to: loss of scenic vistas (Section 7.1); degradation of visual character or quality (Section 7.1); conversion of prime farmland (Section 7.2); loss of habitat for Swainson’s hawks and burrowing owls (Section 7.4); loss of valley elderberry beetle habitat (Section 7.4); and increased water extraction from the shallow/intermediate aquifers (Section 7.8).

As discussed in Section 4.5 of the Tiered IS, the proposed project would incrementally contribute to, but would not exceed, significant and unavoidable cumulative impacts identified in the 2003 LRDP EIR related to: increases in light and glare (Section 7.1); increases in criteria air pollutant emissions (Section 7.3); loss of archaeological and historical resources (Section 7.5); degraded receiving water quality (Section 7.8); increased water extraction from the deep aquifers (Section 7.8); increased ambient noise levels (Section 7.11); construction of police and fire service facilities (Section 7.13); construction of school facilities (Section 7.13); development of recreation facilities (Section 7.14); degraded intersection and freeway operations (Section 7.15); and construction of wastewater treatment facilities (Section 7.16). No significant and unavoidable cumulative impacts related to hazardous materials were identified in the 2003 LRDP EIR.

5.3 SIGNIFICANT IRREVERSIBLE ENVIRONMENTAL CHANGES

The CEQA Guidelines (Section 15126.2[c]) require that an EIR discuss the extent to which a project, during its initial or continued phases (i.e., construction and operations), would commit nonrenewable resources that future generations would be unable to reverse. An impact would fall into this category if:
• The project would involve a large commitment of nonrenewable resources;
• The primary and secondary impacts of a project would generally commit future generations to similar uses (e.g., a highway provides access to a previously remote area);
• The project involves uses in which irreversible damage could result from any potential environmental accidents associated with the project; or
• The phasing of the proposed consumption of resources is not justified (e.g., the project involves the wasteful use of energy).

The proposed project would occur in the existing CNPRC and existing campus roadways. The proposed project would not require the conversion of any land beyond what was previously committed for the existing CNPRC, as analyzed in the 2003 LRDP EIR.

The proposed project would operate a BSL 3 laboratory which would utilize extensive measures to prevent accidental release of BSL 3 organisms into the environment. The risks from increased biohazardous materials use is evaluated in Section 4.3.4 of this Draft EIR and the risk of accidental release is considered to be a less-than-significant impact. If an accidental release of a BSL 3 organism occurred, any resulting damage would not be expected to be irreversible. The BSL 3 laboratory research at the Virology and Immunology would utilize very small quantities of organisms and the expected organisms that would be used would have low infection potential at low concentrations, low aerosol infection potential, low persistence in a non-laboratory environment, and, if an exposure to people or animals did occur, would have a low probability of actual infection and disease contraction (Barry, 2007). Appropriate medical care can typically treat diseases caused by BSL 3 agents. Based on these factors, the proposed project is not expected to result in irreversible damage from a potential environmental accident.

Implementation of the proposed project would result in an irreversible commitment of energy resources, primarily in the form of fossil fuels, including fuel oil, natural gas, and gasoline for construction equipment and operations. The consumption or destruction of other nonrenewable and slowly renewable resources would also result during construction and operation of the proposed project. These resources include, but are not limited to, lumber, sand, gravel, asphalt, metals, and water. The irretrievable commitment of the above-listed resources is considered justified to achieve the overall goals and objectives of the proposed project.
6 ALTERNATIVES

6.1 ALTERNATIVES DESCRIPTION

Section 15126.6 of the CEQA Guidelines require an evaluation of “a range of reasonable alternatives to the project, or the location of the project, which would feasibly attain most of the basic project objectives but would avoid or substantially lessen any of the significant effects, and evaluate the comparative merits of the alternatives.” The purpose of the alternatives analysis is to determine whether or not a variation of the proposed project would reduce or eliminate significant project impacts in the basic framework of the project’s objectives. The alternatives analysis should also discuss the comparative merits of the alternatives. The focus and definition of the alternatives evaluated in this Draft EIR is governed by the “rule of reason” in accordance with Section 15126.6(f) of the CEQA Guidelines requiring evaluation of only those alternatives “necessary to permit a reasoned choice.” Further, an EIR “need not consider an alternative whose effect cannot be reasonably ascertained and whose implementation is remote and speculative.”

The objectives of the proposed UC Davis 2007 Research Laboratory Project are provided in Chapter 3, Project Description, and summarized below:

Virology and Immunology Building
The project goals are to
- Address significant deficiencies in availability of appropriate research space.
- Co-locate virology and immunology researchers currently dispersed at the CNPRC and the Center for Comparative Medicine.
- Provide appropriate BSL 2 and BSL 3 facilities and other current technologies that enable researchers to investigate diseases that existing facilities are currently unable to accommodate.
- Improve process efficiencies and increase worker safety by providing appropriate containment facilities.
- Provide appropriate utility connections to the new laboratory buildings to ensure the adequate supply of system utilities.

Biomedical Research Modular Buildings
The project goals are to:
- Address significant deficiencies in availability of appropriate research and support space for the current program.
- Provide appropriate laboratories for culture of cells in specific conditions and to enable current, visiting, and new researchers to precisely control cell culture environments.
- Improve processing efficiencies and increase worker safety by providing appropriate facilities and to house essential equipment.
- Provide appropriate utility connections to the new laboratories and office modular buildings to ensure the adequate supply of system utilities.

A two-step process was used to conduct the alternatives analysis in this Draft EIR. First, potential alternatives were examined for their feasibility and ability to meet most of the project objectives. Those that clearly were found to be infeasible were rejected without further environmental review. Alternatives that may be feasible and that would attain most of the project objectives were carried forward and analyzed with regard to whether they would reduce or avoid significant impacts of the project. The alternatives considered but rejected are discussed in Section 6.2. The alternatives carried forward for analysis are discussed in Section 6.3. The CEQA Guidelines also requires that the “environmentally superior alternative” be identified in the EIR. Section 6.4 identifies the environmentally superior alternative.
CNPRC Utilities
The proposed project includes utility upgrades to serve growth at the CNPRC including the proposed project and projects previously approved at the CNPRC but not yet constructed. The proposed utilities include telecommunications, natural gas, and domestic water mains. These improvements would be installed as part of the proposed project with connections extending west, across County Road 98 to connection points in Hutchison Drive. The goal of completing these utility proposed utility upgrades is to provide adequate supply and upgrade system reliability at the CNPRC.

6.2 Alternatives Considered But Rejected

This section presents an analysis of alternatives that were considered for the CNPRC 2007 Research Laboratory Project but were rejected because they would not meet basic project objectives, and/or were determined to be infeasible for technological, environmental, legal, social, or other reasons.

Computer Based Research

Under this alternative, research needs would be shifted to computer based research rather than laboratory research. This alternative would be implemented using a combination of two basic computer techniques. The first technique would consist of using computing resources to better assimilate, synthesize, and process prior biological research that has occurred throughout the world and is now more accessible through internet databases. The second technique would consist of using and developing more complex computer models that can either predict outcomes or focus the types of research that are needed to predict outcomes of biological interactions using computer models. Potentially, these two techniques, when used in combination, would reduce the amount of laboratory research that is presently needed or would be needed in the future. If successful, the existing laboratory space at the CNPRC could then be used to conduct the research that is not otherwise able to be completed using computer based research.

Bio-informatics, or the use of computers to assimilate, process, analyze and disseminate biological research information on a global scale is already an indispensable tool for performing advanced biomedical research, allowing for the analysis of massive amounts of data generated in the course of biological, often laboratory-based, experiments. Computational biology, or computer modeling, is a related but distinct analytical tool allowing the generation new data based on experiments incorporating the results of previous experiments. To be useful, computer models must be based on data generated from observations of complex biological systems. Even the most sophisticated technology cannot mimic the complex interactions among pathogenic organisms, cells, tissues and organs. While computer modeling can often serve as an adjunct to other forms of laboratory research, including in vitro methods such as cell and tissue culture, modeling cannot replace them. Any predictions of outcomes or interactions generated by computer models would still require verification in biological systems. Just as a flight simulator is no substitute for actually flying, computational biology is not intended to replace laboratory research. Rather, the goal is to make laboratory research more efficient by eliminating numerous preliminary steps by guiding decisions and identifying the most critical experiments to perform in the laboratory.

This alternative is infeasible because it would not allow researchers to conduct the types of research that are needed to fully evaluate the complex biological interactions that can occur during research with organisms being exposed to new chemicals in varying amounts and protocols. Additionally, the alternative to conduct computer based research was rejected because the chance of success (producing scientifically valid and meaningful results) comparable to the research that would be conducted in the proposed building was is considered remote and speculative.
Construction at Non-UC Davis Location

This alternative would involve purchasing land and constructing the proposed facilities at a non-UC Davis location. The alternative would be very similar to the proposed project except that: 1) the facility would not be constructed adjacent to the research facilities and offices that are within the CNPRC area; and 2) the project would be more expensive because of land acquisition costs that would either include costs for previously installed infrastructure (roads, sewer, flood control, utilities, etc.) but could also necessitate expenditures for required infrastructure if the infrastructure has not been previously provided. A site for potential acquisition has not been identified but because of the size of UC Davis land surrounding the CNPRC and the rural nature of land surrounding the UC Davis land, any potential land acquisition is assumed to be 1 to 2 miles from the CNPRC and could be much further (potential sites in the City of Davis would be at least 2 to 4 miles away).

This alternative could have additional environmental impacts because of increased construction impacts (noise, air quality, water runoff, etc.) to provide the basic infrastructure. This alternative would not meet the basic project objective of co-locating researchers who are currently working in separate buildings within the CNPRC developed area. Rather than providing the desired co-location, this alternative would not meet the stated project objectives because the researchers would have two work locations, their existing offices and administrative spaces within the CNPRC and the new research laboratories that would be constructed at a non-UC Davis location.

This alternative was rejected as infeasible because it would establish an off-site location that researchers would need to travel to in order to conduct the desired research and the need to travel to the offsite location would severely limit the ability of researchers to efficiently conduct the research.

6.3 Alternatives Evaluated in Detail

6.3.1 No Project – No Build

CEQA Guidelines Section 15126.6 states that an EIR’s “no project” analysis should discuss what would reasonably be expected to occur in the foreseeable future if the project were not approved, based on current plans and consistent with available infrastructure and public services. Under the No Project—No Build alternative, UC Davis would continue to use existing research facilities at the CNPRC. The campus would make no modifications to the existing facilities but would attempt to conduct as much of the proposed research as possible utilizing existing facilities.

The No Project—No Build alternative would not meet the basic project objectives. To maximize the use of existing facilities, CNPRC researchers have previously instituted laboratory modifications and protocols to increase efficiency and, where possible, reduce the space available to each researcher. Under this alternative, the continued use of existing facilities would mean that research space at the CNPRC would remain inadequate in terms of the amount of available space and inadequate in terms of the design features that provide the appropriate bio-containment. While some research could be expanded through the potential use of staggered work shifts to utilize the existing space during off-hours, the actual increase in research would be very small and would be relatively expensive due to inefficiencies that would result from increased set-up and laboratory preparation at the start and end of each work shift. Increased utilization of certain laboratories would not be feasible because of containment requirements where additional, and presently non-existent, space would be needed to store contained organisms from the first shift during work hours of the second shift. In addition, some research would require materials to be left in place and not disturbed for periods exceeding eight hours. If a second shift were to utilize the work space of the first shift, the research materials that would be left in place from the first shift would reduce
the available space for the second shift. The effect of this could be to limit the type of research experiments that scientists would conduct. Expanded use of the existing facilities would not improve the containment abilities of the CNPRC research facilities which would not achieve the project objectives of providing improved containment space and improving process efficiency and worker safety with improved containment space.

Compared to the proposed project, the No Project-No Build alternative would have less environmental impacts because no construction would take place and the construction related impacts identified in the Tiered Initial Study (such as impacts to air quality from construction vehicle emissions) would not occur.

This alternative is infeasible because it would not meet the project objectives, would result in insufficient research laboratory space, would result in the inefficient use of campus finances because of the increased expenses of staff time that would be needed to support the inefficient second shift use of research laboratories, and could limit the types of research experiments at the CNPRC.

6.3.2 Construction at Alternative UC Davis Locations:

This alternative would construct the same facilities Virology and Immunology and the Biomedical Research Modular Buildings as the proposed project. Rather than constructing these facilities at the CNPRC, the buildings would be located elsewhere at UC Davis and could be placed within the Central Campus, South Campus, or West Campus areas. To provide adequate reliability for previously approved but not yet completed projects, the proposed utility upgrades would still be needed and constructed as part of this alternative. For this alternative, it is assumed that within the Central Campus, South Campus, or West Campus at UC Davis, adequate building sites could be located that would not need utility upgrades in order to adequately serve the proposed buildings. For this alternative, the Biomedical Research Modular Buildings would be sited together but the Virology and Immunology Building would not need to be sited near the modular buildings and could instead be located at another location.

For all environmental resource areas, this alternative would have similar environmental impacts to the proposed project and would be expected to have similar project costs. This alternative would meet most of the project objectives but would fail to meet a key project objective of co-locating researchers within the CNPRC area. This alternative would require researchers to conduct work in two different locations by providing off-site laboratory facilities and retaining office and administrative space within the CNPRC developed area.

6.3.3 Construction of Reduced Facilities

This alternative would involve construction of a single building to house all of the Virology and Immunology Building research and the research proposed for the Biomedical Research Modular Buildings. The key elements of this alternative would be to construct a single building of only 10,000 gsf instead of the proposed five buildings totaling 16,000 gsf and to conduct a reduced amount of research. To provide adequate reliability for previously approved but not yet completed projects, the proposed utility upgrades would still be needed and constructed as part of this alternative. This alternative would have similar environmental effects to the proposed project but at a lower intensity because of the reduced construction impacts, a smaller increase in employee population, and a reduction operational impacts. The overall reduction in operational impacts would extend to the hazards and biohazardous materials impacts evaluated in this EIR. Overall, the Construction of Reduced Facilities would further reduce the less than significant environmental effects of the project. The project would require the same hazardous
6.4 **Environmentally Superior Alternative**

CEQA requires identification of an environmental superior alternative; that is, the alternative that has the least significant impacts on the environment. For the proposed project, the No Project-No Build Alternative would avoid all contributions to environmental impacts that were identified in the Tiered Initial Study and the Focused Tiered Draft EIR; however, it does not allow for the attainment of basic project objectives.

CEQA also requires that the build or action alternative with the fewest significant impacts be identified in the event that the No Project Alternative is the environmentally superior alternative. While no new significant environmental impacts were identified in this Focused Tiered Draft EIR, the Tiered Initial Study identifies that the proposed project would contribute to significant environmental effects that were previously identified in the 2003 LRDP EIR. For these impacts, the Construction of Reduced Facilities should be considered the environmentally superior alternative. As stated above, this alternative would have similar environmental effects to the proposed project but at a lower intensity because less construction would take place due to the reduction in the proposed building square footage from 16,000 gsf to 10,000 gsf. The alternative would result in a reduced amount of the desired research, a smaller increase to the employee population, and a reduction in operational impacts. The overall reduction in operational impacts would extend to the hazards and biohazardous materials impacts evaluated in this EIR. Overall, the Construction of Reduced Facilities would further reduce the less than significant environmental effects of the project. The project would require the same hazardous materials and bio-containment protocols as the proposed project and would not create any new environmental effects.
REFERENCES AND ACRONYMS/ABBREVIATIONS

References
Barry, Sean. UC Davis Environmental Health and Safety Department. 2007. Personal communication with Matt Dulcich, UC Davis Office of Resource Management and Planning

Pfohl, Aimee, UC Davis Environmental Health and Safety Department. 2007. Personal communication with Matt Dulcich, UC Davis Office of Resource Management and Planning

Sarason, Bob, UC Davis Environmental Health and Safety Department. 2007. Personal communication with Matt Dulcich, UC Davis Office of Resource Management and Planning

Acronyms/Abbreviations

asf assignable square feet
AUCAAC Animal Use and Care Administrative Advisory Committee
BSL Biosafety Level
BUA Biological Use Authorization
Cal/OSHA California Occupational Safety and Health Administration
CalARP California Accidental Release Prevention Program
CEQA California Environmental Quality Act
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
CNPRC California National Primate Research Center
CUPA Certified Unified Program Agency
DTSC State Department of Toxic Substances Control
EH&S Environmental Health and Safety
EIR Environmental Impact Report
gsf gross square feet
HEPA high-efficiency particulate air (filter)
IS Initial Study
NIH National Institutes of Health
NOP Notice of Preparation
The Regents The Board of Regents of the University of California
UC Davis University of California, Davis
University the University of California
YCDEH Yolo County Department of Environmental Health

8 AGENCIES & PERSONS CONSULTED

UC Davis California National Primate Research Center

Aimee Pfohl, UC Davis Environmental Health and Safety

Bob Sarason, UC Davis Environmental Health and Safety

Sean Barry, UC Davis Environmental Health and Safety

9 REPORT PREPARERS

Matt Dulcich, UC Davis Office of Resource Management and Planning

Sid England, UC Davis Office of Resource Management and Planning
Appendix A: UC Davis CNPRC Tiered Initial Study
October 16, 2006

State of California
Office of Planning and Research
1400 Tenth Street
Sacramento, CA 95814

NOTICE OF PREPARATION
FOCUSED TIERED ENVIRONMENTAL IMPACT REPORT

Project Title: UC Davis California National Primate Research Center 2007 Research Laboratory Project

Project Location: University of California, Davis:
Yolo County, west of County Road 98

Counties: Yolo

Project Description

UC Davis proposes to construct five buildings and provide new utility connections to increase the space available for existing and proposed laboratory research and support at the UC Davis California National Primate Research Center (CNPRC). In total, the proposed project would provide approximately 16,000 gsf of new space and would increase the campus population by approximately 20 employees. None of the proposed buildings would provide housing for animals and the proposed project would not increase the number of laboratory research animals at the CNPRC. The proposed use of biohazardous substances in one building would require that the building be constructed and operated as a biosafety level (BSL) 3 facility. Biosafety ratings range from Level 1 to Level 4 and indicate the varying degrees of building containment and laboratory precautions that must be followed while conducting research with particular organisms. The buildings would be located west of County Road 98 and approximately two miles west of the UC Davis main campus within the developed area of the CNPRC north of the existing Primate Center Laboratory building. Utility upgrades to serve the proposed project and future growth at the CNPRC include new telecommunications, natural gas, and domestic water mains.

Environmental Review and Comment

The University of California will be the Lead Agency and will prepare a Focused Tiered Environmental Impact Report (EIR) for the proposed project. This EIR will specifically evaluate the
potential impact areas of hazards and hazardous materials.

Pursuant to Sections 15152 and 15168 of the California Environmental Quality Act Guidelines, the analyses and conclusions in the EIR will be tiered under the programmatic EIR prepared for the 2003 UC Davis Long Range Development Plan (LRDP). Copies of the 2003 LRDP and the project's Tiered Initial Study are available for review during normal operating hours at the UC Davis Office of Resource Management and Planning in 376 Mrak Hall on the UC Davis campus; at Reserves in Shields Library on the UC Davis campus; at the Yolo County Public Library at 315 E. 14th Street in Davis; at the Vacaville Public Library at 1020 Ulatis Drive in Vacaville; and online at http://www.ormp.ucdavis.edu/enviroreview/.

We appreciate your prompt acknowledgement and review of this Tiered Initial Study. The document’s comment period will extend from October 16, 2006 to November 15, 2006. Comments must be received before 5:00 PM on November 15, 2006 and they can be e-mailed to environreview@ucdavis.edu or sent to:

John A. Meyer
Vice Chancellor - Resource Management and Planning
University of California
One Shields Avenue
376 Mrak Hall
Davis, CA 95616

If you have any questions about the project, please contact Sid England, UC Davis Director of Environmental Planning, at (530) 752-2432.

Sincerely,

John A. Meyer
Vice Chancellor - Resource Management and Planning

Enclosures:
15 copies of the Tiered Initial Study
1 Notice of Completion and Environmental Document Transmittal Form
c: Notice of Preparation, Notice of Completion and Environmental Document Transmittal Form, and Tiered Initial Study sent to addressees on attached list
Form A

Notice of Completion & Environmental Document Transmittal

Mail to: State Clearinghouse, PO Box 3044, Sacramento, CA 95812-3044 916/445-0613

Project Title: UC Davis CNPRC 2007 Research Laboratory Project

Lead Agency:	University of California
Contact Person:	Sid England
Street Address:	Office of Resource Management and Planning, UC Davis
Phone:	(530) 752-2432
City:	Davis
County:	Solano & Yolo
Zip:	95616

Project Location:

County:	Yolo
City/Nearest Community:	Davis
Cross Streets:	Hutchison Drive and County Road 98
Assessor's Parcel No.:	NA
Within 2 Miles:	State Hwy #: SR 113 and I-80
Airports:	University Airport
Waterways:	Putah Creek
Railways:	Union Pacific
Schools:	Davis Joint Unified
Zip Code:	95616
Section:	13
Twp.:	8N
Range:	1E
Base:	Mt. Diablo

Document Type:

CEQA:	[x] NOP [] Supplement/Subsequent EIR
NEPA:	[] NOI [x] Other
Other:	[] Joint Document [] Final Document [] Other

Local Action Type:

General Plan Update	Specific Plan
General Plan Amendment	Master Plan
General Plan Element	Planned Unit Development
Community Plan	Site Plan
[] Rezone	[x] Annexation
[] Prezone	[] Redevelopment
[] Use Permit	[] Coastal Permit
[] Land Division (Subdivision, etc.)	[] Other

Development Type:

Residential:	[x] Educational Research Buildings (16,000 sq.ft.)
Office:	[] Recreational
Commercial:	[]
Industrial:	[]
[] Water Facilities:	Type MGD
[] Transportation:	Type
[] Mining:	Mineral
[] Power:	Type Watts
[] Waste Treatment:	Type Plant Expansion
[] Hazardous Waste:	Type
[] Other:	

Funding (approx.): Federal $5,000,000 State $2,000,000 Total $7,000,000

Project Issues Discussed in Document:

- [x] Aesthetic/Visual
- [x] Agricultural Land
- [x] Air Quality
- [x] Archeological/Historical
- [x] Coastal Zone
- [x] Drainage/Absorption
- [x] Economic/Jobs
- [x] Fiscal
- [x] Flood Plain/Flooding
- [x] Forest Land/Fire Hazard
- [x] Geologic/Seismic
- [x] Minerals
- [x] Noise
- [x] Population/Housing Balance
- [x] Public Services/Facilities
- [x] Recreation/Parks
- [x] Schools/Universities
- [x] Septic Systems
- [x] Sewer Capacity
- [x] Soil Erosion/Compaction/Grading
- [x] Solid Waste
- [x] Toxic/Hazardous
- [x] Traffic/Circulation
- [x] Vegetation
- [x] Water Quality
- [x] Water Supply/Groundwater
- [x] Wetland/Riparian
- [x] Wildlife
- [x] Growth Inducing
- [x] Landuse
- [x] Cumulative Effects
- [x] Other

Present Land Use/Zoning/General Plan Designation:

Academic and Administrative

Project Description:

Research buildings and utility upgrades totalling 16,000 square feet. See attached project description.
Reviewing Agencies Checklist

___ Resources Agency
___ Boating & Waterways
___ Coastal Commission
___ Coastal Conservancy
___ Colorado River Board
___ SX_Conservation
___ SX_Fish & Game
___ Forestry & Fire Protection
___ SX_Office of Historic Preservation
___ Parks & Recreation
___ Reclamation Board
___ S.F. Bay Conservation & Development Commission
___ SX_Water Resources (DWR)

Business, Transportation & Housing
___ Aeronautics
___ California Highway Patrol
___ SX_CALTRANS District # _3_
___ Department of Transportation Planning (headquarters)
___ SX_Housing & Community Development

Food & Agriculture

Health & Welfare
___ Health Services

State & Consumer Services
___ General Services
___ OLA (Schools)

Environmental Protection Agency
___ SX_Air Resources Board
___ SX_California Waste Management Board
___ SX_SWRCB: Clean Water Grants
___ SX_SWRCB: Delta Unit
___ SX_SWRCB: Water Quality
___ SX_SWRCB: Water Rights
___ SX_Regional WQCB # _5_ ()

Youth & Adult Corrections
___ Corrections

Independent Commissions & Offices
___ Energy Commission
___ SX_Native American Heritage Commission
___ Public Utilities Commission
___ Santa Monica Mountains Conservancy
___ State Lands Commission
___ Tahoe Regional Planning Agency
___ SX_Other ___ Yolo-Solano AQMD, NOAA Fisheries___

Public Review Period (to be filled in by lead agency)

Starting Date October 16, 2006
Signature

Ending Date November 15, 2006
Date 10/13/06

Lead Agency (Complete if applicable):
Consulting Firm:
Address:
City/State/Zip:
Contact:
Phone: (____)

For SCH Use Only:
Date Received at SCH
Date Review Starts
Date to Agencies
Date to SCH
Clearance Date
Notes:
Project Summary—
UC Davis California National Primate Research Center
2007 Research Laboratory Project

UC Davis proposes to construct five buildings and provide new utility connections to increase the space available for existing and proposed laboratory research and support at the UC Davis California National Primate Research Center (CNPRC). The first building would be approximately 10,000 gross square feet (gsf) and would be constructed to focus on virology and immunology research. The proposed virology and immunology building would encompass 10,000 gsf (6,700 assignable square feet (asf)). The proposed use of biohazardous substances in this building would require that the building be constructed and operated as a biosafety level (BSL) 3 facility. Biosafety ratings range from Level 1 to Level 4 and indicate the varying degrees of building containment and laboratory precautions that must be followed while conducting research with particular organisms. Section 3.5.1 of the Initial Study provides additional details regarding biosafety levels.

The second building would be a modular building of approximately 1,500 gsf and would focus on general biomedical research with activities including National Institutes of Health (NIH) supported studies on stem and progenitor cells. The third building would be a modular building of approximately 1,500 gsf and would provide office support for the stem and progenitor cell research laboratory. The fourth building would be approximately 1,500 gsf and would be utilized for general biomedical research. The fifth building would be approximately 1,500 gsf and provide office support space for the general biomedical research building. The four proposed modular laboratory and office buildings would provide: 1) additional laboratory and office space for existing research programs that currently require increased space, and 2) general biomedical research with activities including NIH supported studies utilizing stem and progenitor cells.

In total, the proposed project would provide approximately 16,000 gsf of new space and would increase the campus population by approximately 20 employees. None of the proposed buildings would provide housing for animals and the proposed project would not increase the number of laboratory research animals at the CNPRC. The buildings would be located west of County Road 98 and approximately two miles west of the UC Davis main campus within the developed area of the CNPRC north of the existing Primate Center Laboratory building. Utility upgrades to serve the proposed project and future growth at the CNPRC include new telecommunications, natural gas, and domestic water mains. These improvements would be installed as part of the proposed project with connections extending west, across County Road 98 to connection points in Hutchison Drive.

Based on the analysis in this Initial Study, it has been determined that the proposed project would not result in any potentially significant impacts that are not sufficiently addressed and mitigated by the 2003 LRDP EIR. Therefore, this Tiered Analysis provides adequate environmental review of the project, and a Negative Declaration could be prepared. However, the proposed project is potentially controversial because it is located at the California National Primate Research Center, which houses laboratory space for non-human primate research. Therefore, a focused Tiered EIR will be prepared for the project. The focused Tiered EIR will evaluate the potential impacts of the project in the area of Hazards and Hazardous Materials, specifically, impacts from increased use and generation of hazardous chemicals and waste and generation of biohazardous materials and waste associated with the proposed project.
Michael J. Bocchicchio
Asst. Vice President – Facilities Administration
University of California, Office of the President
1111 Franklin Street 6th Floor #6201
Oakland, CA 94607-5200

James E. Holst
Office of the General Counsel of The Regents
University of California
300 Lakeside Drive, 7th Floor
Oakland, CA 94612-3550

Phil Zeniner
State Water Resources Control Board
Division of Water Quality
P.O. Box 100
Sacramento, CA 95801

State of California
Native American Heritage Commission
915 Capitol Mall, Room 364
Sacramento, CA 95814

Department of Toxic Substances Control
1001 I Street
Sacramento, CA 95814-2828

Solano County Department of Environmental Management
601 Texas Street
Fairfield, CA 94533

Rosanne Taylor
Department of Conservation
801 K Street, MS-24-02
Sacramento, CA 95814

Bruce De Terra, Chief
Office of Transportation Planning—South
District 3 Sacramento Area Office
Venture Oaks-MS 15
PO Box 942874
Sacramento, CA 94274-0001

State of California
Office of Planning and Research
1400 Tenth Street
Sacramento, CA 95814
(15 copies)

County Clerk
County of Yolo
625 Court Street
Woodland, CA 95695
(notice only)

Hans Kreutzberg
Office of Historic Preservation
P.O. Box 942896
Sacramento, CA 94296-0001

Craig Stowers
Department of Fish & Game
7400 Hendon Way
Elk Grove, CA 95758

County Clerk
County of Solano
600 Texas Street
Fairfield, CA 94533

Katherine Hess
City of Davis
Interim Community Development Director
23 Russell Boulevard
Davis, CA 95616
(3 copies)
John Bencomo
Planning Department
County of Yolo
292 West Beamer Street
Woodland, CA 95695

Christopher Manske
Solano County Planning
601 Texas Street
Fairfield, CA 94533

Thomas To
Yolo County Department of Public Health
Environmental Health Services
10 Cottonwood Street
Woodland, CA 95695

Environmental Services
Department of Fish and Game
1701 Nimbus Road, Suite A
Rancho Cordova, CA 95670

Wayne White
U.S. Fish and Wildlife Service
Ecological Services
2800 Cottage Way #W-2605
Sacramento, CA 95825-1888

Mat Ehrhardt
Yolo-Solano Air Quality Management District
1947 Galileo Court, Suite 103
Davis, CA 95616

Amy Simpson
Central Valley Regional Water Quality Control Board
11020 Sun Center Drive #200
Rancho Cordova, CA 95670-6114

Russell Huck
Environmental Management Branch
Department of Health Services
P.O. Box 942732
Sacramento, CA 94234-7320

Peter Venturini
Air Resources Board
1001 I Street
Sacramento, CA 95814

Sue O'Leary
Permitting and Inspection Branch, MS #15
California Integrated Waste Management Board
1001 I Street
PO Box 4025
Sacramento, California 95812-4025

Jim Hockenberry
State Water Resources Control Board
Division of Clean Water Programs
P.O. Box 944212
Sacramento, CA 94244-2120

The Honorable Lois Wolk
California State Assembly
State Capital
Sacramento, CA 95814
Draft Tiered Initial Study

The following Initial Study has been prepared in compliance with CEQA.

Prepared By:
OFFICE OF RESOURCE MANAGEMENT AND PLANNING
University of California
One Shields Avenue
376 Mrak Hall
Davis, California 95616

October 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Initial Study</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>Tiering Process</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>Scope of the Focused Tiered EIR</td>
<td>3</td>
</tr>
<tr>
<td>2.4</td>
<td>Public and Agency Review</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>Project Approvals</td>
<td>4</td>
</tr>
<tr>
<td>2.6</td>
<td>Organization of the Tiered Initial Study</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PROJECT DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Regional Location</td>
<td>6</td>
</tr>
<tr>
<td>3.2</td>
<td>Project Overview</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>Project Site</td>
<td>11</td>
</tr>
<tr>
<td>3.4</td>
<td>Project Need and Objectives</td>
<td>11</td>
</tr>
<tr>
<td>3.5</td>
<td>Project Elements</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>CONSISTENCY WITH THE 2003 LRDP AND 2003 LRDP EIR</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>2003 LRDP Scope of Development</td>
<td>17</td>
</tr>
<tr>
<td>4.2</td>
<td>2003 LRDP Land Use Designation</td>
<td>17</td>
</tr>
<tr>
<td>4.3</td>
<td>2003 LRDP Population Projections</td>
<td>17</td>
</tr>
<tr>
<td>4.4</td>
<td>2003 LRDP Objectives</td>
<td>18</td>
</tr>
<tr>
<td>4.5</td>
<td>2003 LRDP EIR Cumulative Impacts Analyses</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>DETERMINATION</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>EVALUATION OF ENVIRONMENTAL IMPACTS</td>
<td>22</td>
</tr>
<tr>
<td>7.1</td>
<td>Aesthetics</td>
<td>23</td>
</tr>
<tr>
<td>7.2</td>
<td>Agricultural Resources</td>
<td>27</td>
</tr>
<tr>
<td>7.3</td>
<td>Air Quality</td>
<td>29</td>
</tr>
<tr>
<td>7.4</td>
<td>Biological Resources</td>
<td>36</td>
</tr>
<tr>
<td>7.5</td>
<td>Cultural Resources</td>
<td>39</td>
</tr>
<tr>
<td>7.6</td>
<td>Geology, Soils, & Seismicity</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1. Regional Location 8
Figure 3.2. Project Location 9
Figure 3.3. Project Site Plan 10

LIST OF TABLES

Table 7.11.2: Thresholds of Significance for Noise Evaluations 73
1 PROJECT INFORMATION

Project title:

UC Davis California National Primate Research Center 2007 Research Laboratory Project

Project location:

University of California, Davis
Yolo County

Lead agency's name and address:

Office of Resource Management and Planning
University of California
One Shields Avenue
376 Mrak Hall
Davis, CA 95616-8678

Contact person:

A. Sidney England, Director of Environmental Planning, 530-752-2432

Project sponsor's name and address:

See lead agency.

Location of administrative record:

See lead agency.

Identification of previous documents relied upon for tiering purposes:

This environmental analysis is tiered from the Environmental Impact Report (EIR) for the UC Davis 2003 Long Range Development Plan (2003 LRDP) (State Clearinghouse No. 2002102092). The 2003 LRDP is a comprehensive land use plan that guides physical development on campus to accommodate projected enrollment increases and expanded and new program initiatives through the 2015-16 academic year. Section 2.2 provides additional information about the tiering process. The 2003 LRDP and its EIR are available for review at the following locations:

- UC Davis Office of Resource Management and Planning in 376 Mrak Hall on the UC Davis campus
- Reserves at Shields Library on the UC Davis campus
- Yolo County Public Library at 315 East 14th Street in Davis
- Online at http://www.ormp.ucdavis.edu/environreview/
2 INTRODUCTION

2.1 INITIAL STUDY

Pursuant to Section 15063 of the California Environmental Quality Act (CEQA) Guidelines (Title 14, California Code of Regulations, Sections 15000 et seq.), an Initial Study is a preliminary environmental analysis that is used by the lead agency as a basis for determining whether an EIR, a Mitigated Negative Declaration, or a Negative Declaration is required for a project. The CEQA Guidelines require that an Initial Study contain a project description, description of environmental setting, identification of environmental effects by checklist or other similar form, explanation of environmental effects, discussion of mitigation for significant environmental effects, evaluation of project’s consistency with existing, applicable land use controls, and name of persons who prepared the study.

2.2 TIERING PROCESS

This environmental analysis is a Tiered Initial Study for the proposed UC Davis California National Primate Research Center 2007 Research Laboratory Project (referred to as the “proposed project” throughout this document). This environmental analysis is tiered from the UC Davis 2003 LRDP EIR in accordance with Sections 15152 and 15168 of the CEQA Guidelines and Public Resources Code Section 21094. The 2003 LRDP EIR is a Program EIR that was prepared pursuant to Section 15168 of the CEQA Guidelines. The 2003 LRDP is a comprehensive land use plan that guides physical development on campus to accommodate projected enrollment increases and expanded and new program initiatives through the 2015-16 academic year. The 2003 LRDP EIR analyzes full implementation of uses and physical development proposed under the 2003 LRDP, and it identifies measures to mitigate the significant adverse program-level and cumulative impacts associated with that growth. The proposed project is an element of the growth that was anticipated in the 2003 LRDP and evaluated in the 2003 LRDP EIR.

The CEQA concept of "tiering" refers to the evaluation of general environmental matters in a broad program-level EIR, with subsequent focused environmental documents for individual projects that implement the program. This environmental document incorporates by reference the discussions in the 2003 LRDP EIR (the Program EIR) and concentrates on project-specific issues. CEQA and the CEQA Guidelines encourage the use of tiered environmental documents to reduce delays and excessive paperwork in the environmental review process. This is accomplished in tiered documents by eliminating repetitive analyses of issues that were adequately addressed in the Program EIR and by incorporating those analyses by reference.

Section 15168(d) of the State CEQA Guidelines provides for simplifying the preparation of environmental documents on individual parts of the program by incorporating by reference analyses and discussions that apply to the program as a whole. Where an EIR has been prepared or certified for a program or plan, the environmental review for a later activity consistent with the program or plan should be limited to effects that were not analyzed as significant in the prior EIR or that are susceptible to substantial reduction or avoidance (CEQA Guidelines Section 15152[d]).

Accordingly, the tiering of the environmental analysis for the proposed project allows this Tiered Initial Study to rely on the 2003 LRDP EIR for the following:

- a discussion of general background and setting information for environmental topic areas;
- overall growth-related issues;
• issues that were evaluated in sufficient detail in the 2003 LRDP EIR for which there is no significant new information or change in circumstances that would require further analysis; and
• assessment of cumulative impacts.

The purpose of this Tiered Initial Study is to evaluate the potential environmental impacts of the proposed project with respect to the 2003 LRDP EIR to determine what level of additional environmental review, if any, is appropriate. As shown in the Determination form in Section 6 of this document and based on the analysis contained in this Tiered Initial Study, it has been determined that the proposed project would not have potentially significant effects on the environment that were not previously addressed in the 2003 LRDP EIR.

This Initial Study concludes that many potentially significant project impacts are addressed by the measures that have been adopted as part of the approval of the 2003 LRDP. Therefore, those 2003 LRDP EIR mitigation measures that are related to, and may reduce the impacts of, this project will be identified in this Initial Study. The appropriate reference to the LRDP Mitigation Monitoring Program will also be made. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted. The benefits of these mitigation measures will be achieved independently of considering them specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement the LRDP mitigation measures.

2.3 Scope of the Focused Tiered EIR

Based on the analysis in this Initial Study, it has been determined that the proposed project would not result in any potentially significant impacts that are not sufficiently addressed and mitigated by the 2003 LRDP EIR. Therefore, this Tiered Analysis provides adequate environmental review of the project, and a Negative Declaration could be prepared. However, the proposed project is potentially controversial because it is located at the California National Primate Research Center, which houses laboratory space for non-human primates. Therefore, a focused Tiered EIR will be prepared for the project. The focused Tiered EIR will evaluate the potential impacts of the project in the following resource area:

Hazards and Hazardous Materials, specifically, impacts from increased use and generation of hazardous chemicals and waste and generation of biohazardous materials and waste associated with the proposed project.

Research facilities such as those proposed under this project can engender controversy from animal rights groups when proposed at the CNPRC. However, public controversy is not enough to show that an EIR is required unless there is also a significant impact on the environment such as increased risks from biohazardous materials. In order to provide the public and the decision makers with all relevant information about the project, the focused Tiered EIR will include an evaluation of the proposed facilities for their conformance with the design and operational requirements for biohazardous containment facilities.

Because the campus has elected to prepare an EIR, alternatives to the proposed project will be analyzed. The range of alternatives will include the No Project alternative, constructing the proposed facilities at alternative locations, and constructing reduced facilities.

The scope of the EIR may be revised following receipt and review of comments received on the Notice of Preparation and this Initial Study.
2.4 **Public and Agency Review**

This Draft Tiered Initial Study will be circulated for public and agency review from October 16, 2006 to November 15, 2006. Copies of this document, the 2003 LRDP, and the 2003 LRDP EIR are available for review at the following locations:

- UC Davis Office of Resource Management and Planning in 376 Mrak Hall on the UC Davis campus
- Reserves at Shields Library on the UC Davis campus
- Yolo County Public Library at 315 East 14th Street in Davis

Comments on this Draft Tiered Initial Study must be received by 5:00 PM on November 15, 2006 and can be e-mailed to environreview@ucdavis.edu or sent to:

John A. Meyer
Vice Chancellor - Resource Management and Planning
University of California
One Shields Avenue
376 Mrak Hall
Davis, CA 95616

2.5 **Project Approvals**

As a public agency principally responsible for approving or carrying out the proposed project, the University of California is the Lead Agency under CEQA and is responsible for reviewing and certifying the adequacy of the environmental document and approving the proposed project. Approval of the proposed project has been delegated by The Board of Regents of the University of California (The Regents) to the Office of the President and, for certain portions of the project, to the Chancellor of UC Davis. Project approvals are expected to be considered during the winter and spring of 2007.

2.6 **Organization of the Tiered Initial Study**

This Tiered Initial Study is organized into the following sections:

Section 1 – Project Information: provides summary background information about the proposed project, including project location, lead agency, and contact information.

Section 2 – Introduction: summarizes the Tiered Initial Study's relationship to the 2003 LRDP EIR, the scope of the document, the project's review and approval processes, and the document's organization.

Section 3 – Project Description: includes a description of the proposed project, including the need for the project, the project's objectives, and the elements included in the project.

Section 4 – Consistency with the 2003 LRDP: describes the consistency of the proposed project with the 2003 LRDP and 2003 LRDP EIR.
Section 5 – Environmental Factors Potentially Affected: identifies which environmental factors, if any, involve at least one significant or potentially significant impact that has not been previously addressed in the 2003 LRDP EIR and cannot be reduced to a less-than-significant level.

Section 6 – Determination: indicates whether impacts associated with the proposed project are significant, and what, if any, additional environmental documentation is required.

Section 7 – Evaluation of Environmental Impacts: contains the Tiered Environmental Checklist form for each resource area. The checklist is used to assist in evaluating the potential environmental impacts of the proposed project with respect to the 2003 LRDP EIR. This section also presents a background summary for each resource area, the standards of significance and relevant impacts and mitigation measures from the 2003 LRDP EIR, and an explanation of all checklist answers.

Section 8 – Fish and Game Determination: indicates if the project has a potential to impact wildlife or habitat and if an associated Fish and Game filing fee would be paid.

Section 9 – References: lists references used in the preparation of this document.

Section 10 – Agencies and Persons Consulted: provides the names of individuals contacted in preparation of this document.

Section 11 – Report Preparers: lists the names of individuals involved in the preparation of this document.
3 PROJECT DESCRIPTION

3.1 REGIONAL LOCATION

The approximately 5,300 acre UC Davis campus is located in Yolo and Solano Counties approximately 72 miles northeast of San Francisco, 15 miles west of the City of Sacramento, and adjacent to the City of Davis (see Figure 3.1). The campus is comprised of four campus units: the central campus, the south campus, the west campus, and Russell Ranch. Most academic and extracurricular activities occur within the central campus. The central campus is bounded generally by Russell Boulevard to the north, State Route 113 (SR 113) to the west, Interstate 80 (I-80) and the Union Pacific Railroad tracks to the south, and A Street to the east. The south campus is located south of I-80 and north of the South Fork of Putah Creek. The west campus is bounded by SR 113 to the east, Putah Creek to the south, Russell Boulevard to the north, and extends approximately one-half mile west of County Road 98. The south and west campus units are contiguous with the central campus, and are used primarily for field teaching and research. The approximately 1,600 acre Russell Ranch portion of the campus lies to the west, separated from the west campus by approximately one and one-half miles of privately owned agricultural land. Russell Ranch was purchased in 1990 for campus uses including large-scale agricultural and environmental research, study of sustainable agricultural practices, and habitat mitigation. Russell Ranch is bordered roughly by County Road 96 on the east, Putah Creek on the south, Covell Boulevard on the north, and Russell Boulevard and privately owned agricultural land on the west and northwest.

3.2 PROJECT OVERVIEW

UC Davis proposes to construct five buildings and provide new utility connections to increase the space available for existing and proposed laboratory research and support at the UC Davis California National Primate Research Center (CNPRC). The first building would be approximately 10,000 gross square feet (gsf) and would be constructed to focus on virology and immunology research. The proposed use of biohazardous substances in this building would require that the building be constructed and operated as a biosafety level (BSL) 3 facility.1

The proposed virology and immunology building would encompass 10,000 gsf (6,700 assignable square feet (asf)). The building would include 1,200 asf of office and office support space, 5,300 asf of laboratory space and laboratory support space, and 200 asf of building support space.2 The proposed laboratory space would include approximately 1,100 asf would be designed as a BSL 3 laboratory suite containment and operational requirements for research involving potentially infectious agents. The building would be constructed in phases, and the first phase of the building would consist of approximately 5,500 gsf with the BSL 3 laboratory portion of the building comprising approximately 1,100 asf. Space within the first phase would also provide BSL 2 space. See Section 3.5.1 of this Initial Study for a definition of biosafety levels.

The second building would be a modular building of approximately 1,500 gsf and would focus on general biomedical research with activities including National Institutes of Health (NIH) supported studies on stem and progenitor cells. The third building would be a modular building of approximately 1,500 gsf and would provide office support for the stem and progenitor cell research laboratory. The fourth building would be approximately 1,500 gsf and would be utilized for general biomedical research. The fifth building would be approximately 1,500 gsf and provide office support space for the general biomedical research building.

1 Biosafety ratings range from Level 1 to Level 4 and indicate the varying degrees of building containment and laboratory precautions that must be followed while conducting research with particular organisms.
2 ASF refers to the actual usable space with a building that can be assigned for use. Excluded from asf are areas such as mechanical rooms, hallways, and service space.
The four proposed modular laboratory and office buildings would provide; 1) additional laboratory and office space for existing research programs that currently require increased space, and 2) general biomedical research with activities including NIH supported studies utilizing stem and progenitor cells. The buildings would be approximately 24 feet by 60 feet each and would provide approximately 3,000 gsf of new laboratory and support space and 3,000 gsf of new office space. In total, the proposed project would provide approximately 16,000 gsf of new space and would increase the campus population by approximately 20 employees. None of the proposed buildings would provide housing for animals and the proposed projects would not increase the number of laboratory research animals at the CNPRC. The buildings would be located west of County Road 98 and approximately two miles west of the UC Davis main campus within the developed area of the CNPRC north of the existing Primate Center Laboratory building (Figure 2).

Utility upgrades to serve the proposed project and future growth at the CNPRC include new telecommunications, natural gas, and domestic water mains. These improvements would be installed as part of the proposed project with connections extending west, across County Road 98 to connection points in Hutchison Drive. The proposed utility corridors are shown in Figure 3.
Figure 2
Project Location
CNPRC Virology and Immunology

UC Davis
Central Campus
Highway 113
City of Davis
Russell Blvd.
Hitchinson Drive
Hopkins Road
University Airpot
California National Primate Research Center
Pedrick Road
0 500 1,000 2,000 Feet
3.3 **PROJECT SITE**

The proposed project site is located within the developed portion of the CNPRC on land formerly used for agriculture and now managed for weed and rodent control. The buildings all would be one-story and would be located in close proximity to similar research buildings and to the CNPRC administration building. Uses surrounding the site include a vacant field area to the north, a parking lot to the east, and CNPRC buildings to the south and west.

3.4 **PROJECT NEED AND OBJECTIVES**

Virology and Immunology Building

The proposed virology and immunology building would address existing research space needs and would provide expansion space for increased virology and immunology research. Appropriate laboratory space is needed to optimize the existing laboratories at the CNPRC. Staff scientists now work with viruses that must be handled with BSL 2 containment. Given the lack of BSL 3 space, existing working conditions are suboptimal and staff scientists must utilize slow and cumbersome procedures to undertake their research. Construction of the proposed facility will permit consolidation of existing human pathogen research activities in modern BSL 2 and BSL 3 containment laboratories. New space is needed at the CNPRC to address space deficiencies that have resulted from program growth. The project goals are to:

- Address significant deficiencies in availability of appropriate research space.
- Co-locate virology and immunology researchers currently dispersed at the CNPRC and the Center for Comparative Medicine.
- Provide appropriate BSL 2 and BSL 3 facilities and other current technologies that enable researchers to investigate diseases that existing facilities are currently unable to accommodate.
- Improve process efficiencies and increase worker safety by providing appropriate containment facilities.
- Provide appropriate utility connections to the new laboratory buildings to ensure the adequate supply of system utilities.

These goals will be accomplished by providing high-quality research laboratory space, research support space, and office space for faculty, staff, and graduate students in the field of virology and whose research is focused on non-human primate models of human infectious diseases, including AIDS.

Biomedical Research Modular Buildings

The proposed project would provide new space to address existing research space needs (all BSL 2), ease extensive overcrowding within existing laboratories and office space, provide laboratory and office space for current and new employees, and address the needs for growth in research programs in cell and gene-based therapies. New space is needed at the CNPRC to solve significant space deficiencies that have resulted from program growth.

The project goals are to:

- Address significant deficiencies in availability of appropriate research and support space for the current program.
- Provide appropriate laboratories for culture of cells in specific conditions and to enable current, visiting, and new researchers to precisely control cell culture environments.
- Improve processing efficiencies and increase worker safety by providing appropriate facilities and to house essential equipment.
• Provide appropriate utility connections to the new laboratories and office modular buildings to ensure the adequate supply of system utilities.

These goals will be accomplished by providing high-quality research laboratory and support space, and office space for faculty, staff, students, fellows, and visiting faculty and staff that conduct research that addresses stem and progenitor cell therapies for regenerative medicine purposes and the treatment of human disease.

3.5 PROJECT ELEMENTS

3.5.1 Facility Design

Laboratory Space
To meet the anticipated research requirements the proposed project would be constructed and furnished to conform with the requirements for BSL 2 and BSL 3 as defined in the Centers for Disease Control and Prevention (CDC) publication Biosafety in Biomedical and Biological Laboratories (BMBL). This publication defines four biosafety levels that apply to biohazardous materials operations, depending on the risk posed by the organism involved in the research. Two of the four biosafety levels would be applicable to the proposed project and are further discussed below.

Although these biosafety levels were originally intended to protect human health, the CDC Guidelines are widely used to prevent release of animal or human pathogens from laboratories. BSL 2 is appropriate for use with biohazardous materials that are considered to be of ordinary (not special) potential hazard and may produce varying degrees of disease through accidental autoinoculation, ingestion, and skin or mucous membrane exposure. BSL 3 is appropriate for use with agents that can be contracted by the respiratory route and may cause serious or lethal diseases in humans or animals, or cause moderate economic loss to animal industries. The appropriate controls for a particular laboratory depend not only on the organism being used in the laboratory but also the quantities and concentrations of organisms that will be involved and the hazards associated with proposed use. For example, propagation of infectious agents for vaccine production involves large quantities of organisms in high concentrations. In contrast, as with the proposed project, clinical specimens generally contain very small quantities of infectious agents.

BSL 2 Laboratory
The following requirements apply to BSL 2 facilities:
• Lockable doors must be provided for facilities that house restricted agents.
• Planning for new laboratories should consider locating them away from public areas.
• Each laboratory must contain a sink for handwashing.
• Each laboratory must be designed so that it can be easily cleaned and chairs and other furniture used in laboratory should be covered with a non-fabric material that can be easily decontaminated.
• Laboratory furniture must be capable of supporting anticipated loading and uses. Spaces between benches, cabinets, and equipment must be accessible for cleaning.
• Biological safety cabinets should be installed in such a manner that fluctuations of the room supply and exhaust air do not cause the biological safety cabinets to operate outside their parameters for containment. Biological safety cabinets should be located away from doors, from windows that can be opened, from heavily traveled laboratory areas, and from other potentially disruptive equipment so as to maintain the air flow parameters for containment.
• An eyewash station must be readily available.
• Illumination must be adequate for all activities, avoiding reflections and glare that could impede vision.
• There are no specific ventilation requirements. However, planning of new facilities should consider mechanical ventilation systems that provide an inward flow of air without recirculation to spaces outside of the laboratory. If the laboratory has windows that open to the exterior, they must be fitted with fly screens.

BSL 3 Laboratory

The following requirements apply to BSL 3 facilities:

• The laboratory must be separated from areas that are open to unrestricted traffic flow within the building, and access to the laboratory must be restricted. Passage through a series of two self-closing doors is the basic requirement for entry into the laboratory from access corridors. Doors must be lockable. A clothes change room may be included in the passageway.

• The interior surfaces of walls, floors, and ceilings of areas where BSL 3 agents are handled must be constructed for easy cleaning and decontamination. Seams, if present, must be sealed. Walls, ceilings, and floors should be smooth, impermeable to liquids and resistant to the chemicals and disinfectants normally used in the laboratory. Floors should be monolithic and slip resistant. Consideration should be given to the use of coved floor coverings. Penetrations in floors, walls, and ceiling surfaces must be sealed. Openings such as around ducts and the spaces between doors and frames must be capable of being sealed to facilitate decontamination.

• Laboratory furniture must be capable of supporting anticipated loading and uses. Spaces between benches, cabinets, and equipment must be accessible for cleaning. Chairs and other furniture used in laboratory work should be covered with a non-fabric material that can be easily decontaminated. Bench tops must be impervious to water and resistant to moderate heat and the organic solvents, acids, alkalis, and those chemicals used to decontaminate the work surfaces and equipment.

• All windows in the laboratory must be closed and sealed.

• A method for decontaminating all laboratory wastes must be available in the facility and utilized, preferably within the laboratory (i.e., autoclave, chemical disinfection, incineration, or other approved decontamination method). Consideration should be given to means of decontaminating equipment. If waste is transported out of the laboratory, it should be properly sealed and not transported in public corridors.

• A ducted exhaust air ventilation system must be provided. This system creates directional airflow which draws air into the laboratory from "clean" areas and toward "contaminated" areas. The exhaust air must not be recirculated to any other area of the building. Filtration and other treatments of the exhaust air are not required, but may be considered based on site requirements, and specific agent manipulations and use conditions. The outside exhaust must be dispersed away from occupied areas and air intakes, or the exhaust must be HEPA-filtered. Laboratory personnel must verify that the direction of the airflow (into the laboratory) is proper. It is recommended that a visual monitoring device that indicates and confirms directional inward airflow be provided at the laboratory entry. Consideration should be given to installing an HVAC control system to prevent sustained positive pressurization of the laboratory. Audible alarms should be considered to notify personnel of HVAC system failure.

• HEPA-filtered exhaust air from a Class II biological safety cabinet can be recirculated into the laboratory if the cabinet is tested and certified at least annually. When exhaust air from Class II safety cabinets is to be discharged to the outside through the building exhaust air system, the cabinets must be connected in a manner that avoids any interference with the air balance of the cabinets or the building exhaust system (e.g., an air gap between the cabinet exhaust and the exhaust duct). When Class III biological safety cabinets are used they should be directly connected to the exhaust system. If the Class III cabinets are connected to the supply system, it must be done in a manner that prevents positive pressurization of the cabinets. Biological safety cabinets are required and must be located away from doors, from room supply louvers, and from heavily-traveled laboratory areas.
- Continuous flow centrifuges or other equipment that may produce aerosols must be contained in devices that exhaust air through HEPA filters before discharge into the laboratory. These HEPA systems must be tested at least annually. Alternatively, the exhaust from such equipment may be vented to the outside if it is dispersed away from occupied areas and air intakes.

- Vacuum lines must be protected with liquid disinfectant traps and HEPA filters, or their equivalent. Filters must be replaced as needed. An alternative is to use portable vacuum pumps (also properly protected with traps and filters).

- An eyewash station must be readily available inside the laboratory. Each laboratory room must contain a sink for hand washing. The sink must be hands-free or automatically operated and located near the room exit door.

- Illumination must be adequate for all activities, avoiding reflections and glare that could impede vision.

- The BSL 3 facility design and operational procedures must be documented. The facility must be tested for verification that the design and operational parameters have been met prior to operation. Facilities should be re-verified, at least annually, against these procedures as modified by operational experience.

To meet these requirements, the proposed BSL 3 laboratory would be physically separated from the exterior and from other areas of the building. The laboratories would be provided with a ducted exhaust air ventilation system that would draw air from “clean” areas into the laboratory and the exhaust from the laboratory would be HEPA-filtered to prevent release of infectious organisms into the environment. Laboratory procedures that could generate aerosols containing infectious organisms would be performed in biosafety cabinets, which would contain any aerosols produced and would include HEPA filters for exhaust air. All laboratory waste, including specimens, would be decontaminated by treatment in an autoclave before being removed from the BSL 3 area. To prevent infectious organisms from traveling out of the laboratory into the environment on workers’ clothing, workers would change into protective clothing before entering the laboratory and would remove protective clothing in the de-gowning room before entering the changing room. Used protective clothing would be decontaminated in an autoclave before disposal or laundering for re-use. The floors, ceilings, and wall surfaces would be constructed for easy cleaning and decontamination and the benchtops would be impervious to water and resistant to heat and chemicals. In addition, all penetrations through floor coverings and wall surfaces would be sealed. The project would comply with applicable elements of the UC Davis Biosafety Program. The UC Davis Office of Environmental Health and Safety (EH&S) Biosafety Officer will review the project plans during project design to ensure that the BSL 3 laboratory conforms to the requirements for BSL 3 as outlined in the CDC standards. The EH&S Biosafety Officer also will review the project for conformance with sections of the campus design guidelines pertaining to laboratories, including biosafety cabinet specifications. The EH&S Biosafety Officer would inspect the facility during construction and would be responsible for certifying that the laboratory is consistent with the CDC standards and that it is suitable for use.

In compliance with UC Davis policy, the research program would obtain a Biological Use Authorization (BUA) for the work that would be performed using infectious organisms, subject to approval by the Biological Safety Administrative Advisory Committee (BSAAC). Consistent with the UC Davis Biosafety Program, the laboratory would be inspected annually by the EH&S Biosafety Officer to verify compliance with all policies and procedures outlined in the UC Davis Biosafety Manual and with all applicable federal and state standards and requirements. The biosafety cabinets would also be tested and certified on an annual basis. Following UC Davis policy, appropriate training would be required for all employees working in the laboratory.
Office Space
To provide the necessary office space for research personnel, two modular office buildings will be sited adjacent to the two modular laboratory buildings. These units will meet or exceed all state and local code requirements including NFPA and ADA. Each office unit will contain 4-5 private offices furnished with desks, bookcases, and work tables. An additional six work stations will be located within a central common area for use by graduate students and research technicians. A conference/meeting room will be located within each unit to provide a collaborative space for research scientists, students, fellows, and staff.

3.5.2 Buildings
The proposed project includes construction of the five buildings summarized below. In total, the proposed project would provide approximately 16,000 gsf of new space.

- **Building 1**: At build-out, the approximately 10,000 gsf virology and immunology building will consist of approximately 6,700 asf which includes approximately 1,100 asf of BSL 3 space, 4,300 asf for BSL 2 molecular biology and tissue culture laboratories, and 1,100 asf of office and conference room space, and approximately 200 asf of building support space.
- **Building 2**: Building 2 will consist of 1,500 gsf and will be a single-story modular building primarily used as laboratory space. This space will include six BSL 2 (each lab with 210 asf of space) for cell culture, molecular biology, cell cryopreservation, and associated processing, storage, and equipment, and one 220-asf flow cytometry laboratory.
- **Building 3**: Building 3 will consist of 1,500 gsf and will be a single-story modular building that would primarily be used as office space with 475 asf of office space for graduate students and research technicians, five 125-asf offices for project and visiting scientists, fellows, collaborators, and administrative personnel, and one 400-asf conference/meeting room.
- **Building 4**: Building 4 will consist of 1,500 gsf and will be a single-story modular building that would primarily be used as laboratory space. This space will include six BSL 2 wet labs (each lab with 210 asf of space) for cell culture, molecular biology, and associated processing and storage and one 220-asf cell culture and sorting laboratory.
- **Building 5**: Building 5 will consist of 1,500 gsf and will be a single-story modular building that would primarily be used as office space with 600 asf of office space for students, fellows, and technicians, four 125-asf offices for project and visiting scientists and collaborators, and one 400-asf meeting/lecture room.

3.5.3 Landscaping
No landscaping removal or tree removal will take place in order to accommodate the proposed buildings. After completion, landscaping around the perimeter of each building will be included in the building site improvements.

3.5.4 Parking and Roadways
No additional parking or roadway construction will take place with the proposed project.

3.5.5 Utilities and Infrastructure
As discussed briefly below and analyzed in Section 4.15, the proposed project would require connections to campus utilities and infrastructure including domestic water, sanitary sewer, storm drainage, electricity, natural gas, and telecommunications.

- **Domestic Water**: The proposed project would extend a water main from the east side of Country Road 98 westward into the CNPRC area to serve the proposed project and future developments. The new water service would include service distribution pipes to individual buildings throughout the CNPRC.
• Sanitary Sewer: The proposed buildings would connect to the existing wastewater pipes located throughout the CNPRC. No upgrade of the wastewater system would be needed to serve the buildings.

• Storm Drainage: The proposed project would include revisions to the site drainage at each building site to provide adequate drainage away from each building and into the CNPRC drainage system. No upgrade of the CNPRC drainage system would be required.

• Electricity: The proposed project would connect to existing electrical service within the CNPRC. No upgrade to the electrical system would be needed.

• Natural Gas: The existing service at the CNPRC is not adequate to serve the proposed project and a system upgrade would be provided by extending a new natural gas service main from the east side of County Road 98 westward into the CNPRC developed area. The new service main would then connect to existing gas distribution lines and new distribution lines to the proposed project and other future project within the CNPRC.

• Telecommunications: New telecommunication service would be provided by extending a new telecommunication line from the east side of County Road 98 westward into the CNPRC developed area. The new line would then connect to existing and future buildings in order to provide increased telecommunications services to the CNPRC.

3.5.6 Sustainable Design Elements
The proposed project would comply with the Regental Policy on Green Building Design and Clean Energy Standards, and would meet the campus baseline as applicable to the project.

3.5.7 Population
The proposed project would add approximately 20 people to the campus population. All of the new employees would work at the CNPRC.

3.6 Construction Schedule and Staging
Construction of the proposed project is anticipated to begin in spring or summer of 2007 and end in 2009 or early 2010. Construction staging and contractor parking associated with the proposed project would occur adjacent to each construction site.
4 **CONSISTENCY WITH THE 2003 LRDP AND 2003 LRDP EIR**

In order to determine the proposed project’s consistency with the 2003 LRDP and 2003 LRDP EIR, the following questions must be answered:

- Is the proposed project included in the scope of the development projected in the 2003 LRDP?
- Is the proposed location of the project in an area designated for this type of use in the 2003 LRDP?
- Are the changes to campus population associated with the proposed project included within the scope of the 2003 LRDP’s population projections?
- Are the objectives of the proposed project consistent with the objectives adopted for the 2003 LRDP?
- Is the proposed project within the scope of the cumulative analysis in the 2003 LRDP EIR?

The following discussion describes the proposed project’s relationship to and consistency with the development projections, population projections, land use designations, objectives, and cumulative impacts analyses contained in the 2003 LRDP.

4.1 **2003 LRDP SCOPE OF DEVELOPMENT**

The proposed project would provide new laboratory space at the CNPRC to expand biological research. The 2003 LRDP anticipates academic and administrative space on campus will increase to approximately 7,175,000 asf through 2015-16. In fall 2002, the campus had only approximately 4,475,000 asf of academic and administrative space. The proposed project with 16,000 asf of academic/administrative space, in combination with other recently approved and currently proposed project, would not increase academic and administrative building space on campus to levels that would exceed those projected for 2015-16. Therefore, the proposed project is well within the 2003 LRDP’s scope of academic and administrative development.

4.2 **2003 LRDP LAND USE DESIGNATION**

The applicable land use plan for the campus is the 2003 LRDP. The 2003 LRDP designates land within the CNPRC as Academic and Administrative-Low Density. The proposed project involves the construction of research buildings that would be consistent with the Academic and Administrative land use designation. No change to the land use designation would be required.

4.3 **2003 LRDP POPULATION PROJECTIONS**

The 2003 LRDP projects that, through 2015-16, the on-campus population will increase to include approximately 30,000 students, 14,500 faculty and staff, and 3,240 non-UC employees. In addition, the total number of household members associated with students and employees living in on-campus housing is expected to increase to approximately 29,803. The fall 2003 on-campus faculty and staff

3 The on-campus population includes students and employees on the UC Davis main campus and at other University owned and operated facilities in the City of Davis. The campus population is determined based on headcount, a method of counting faculty, staff, and students in which each person is counted as one unit regardless of whether he or she is employed or studying full-time or part-time. Student population figures represent student headcount averaged over the primary three academic quarters (i.e., fall, winter, spring).
headcount was approximately 10,500, and the 2002-03 three-quarter average on-campus student population was approximately 26,650 (UC Davis ORMP 2003a and b). The proposed project, which would introduce no new students and 20 new members of the faculty and staff population, in combination with other recently approved and currently proposed projects, would not increase the campus population to a level that would approach that projected for 2015-16. Therefore, the proposed project is well within the 2003 LRDP's on-campus population projections.

4.4 2003 LRDP Objectives

The primary objective of the 2003 LRDP is to plan for the Davis campus' share of the University of California's short- and long-term enrollment demands. In addition, the 2003 LRDP aims to:

- create a physical framework to support the teaching, research, and public service mission of the campus;
- manage campus lands and resources in a spirit of stewardship for the future; and
- provide an environment that enriches campus life and serves the greater community.

The proposed project would support these main 2003 LRDP objectives by providing increased research space for biomedical research.

In addition, the 2003 LRDP includes specific objectives that are relevant to the proposed project, including the following:

Academic Facilities Growth: Provide flexibility to located 2.5 million additional square feet in Academic and Administrative land use, largely through infill development in the Academic Core and the Health Sciences District. LRDP, page 59.

The proposed project would help meet the LRDP objective of academic facilities growth by providing new research laboratories to support the increased research at the CNPRC.

4.5 2003 LRDP EIR Cumulative Impacts Analyses

In addition to evaluating the environmental effects directly associated with projected campus development, the 2003 LRDP EIR evaluates the cumulative effects of campus development combined with off-campus development through 2015-16. The cumulative context considered in the 2003 LRDP EIR varies, depending on the nature of the issue being studied, to best assess each issue's geographic extent. For example, the cumulative impacts on water and air quality can be best analyzed within the boundaries of the affected resources, such as water bodies and air basins. For other cumulative impacts, such as hazard risks, traffic, and the need for new public service facilities, the cumulative impact is best analyzed within the context of the population growth and associated development that are expected to occur in the region.

As discussed in Sections 4.1 through 4.4 above, the proposed project is within the scope of campus development projected in the 2003 LRDP EIR. In addition, the campus is unaware of any changes to local growth plans or other changes in the region since certification of the 2003 LRDP EIR that would substantially change the document's conclusions regarding cumulative impacts. Therefore, the proposed project would incrementally contribute to, but would not exceed, the cumulative impacts analyses included in the 2003 LRDP EIR.

The environmental resource discussions that follow in this document conclude that the project would result in the following types of cumulative impacts.
The proposed project would not contribute to significant and unavoidable cumulative impacts identified in the 2003 LRDP EIR related to: loss of scenic vistas (Section 7.1); degradation of visual character or quality (Section 7.1); conversion of prime farmland (Section 7.2); loss of habitat for Swainson’s hawks and burrowing owls (Section 7.4); loss of wetland and riparian habitat (Section 7.4); loss of valley elderberry beetle habitat (Section 7.4); and increased water extraction from the shallow/intermediate aquifers (Section 7.8).

The proposed project would incrementally contribute to, but would not exceed, significant and unavoidable cumulative impacts identified in the 2003 LRDP EIR related to: increases in light and glare (Section 7.1); increases in criteria pollutant emissions (Section 7.3); loss of archaeological and historical resources (Section 7.5); degraded receiving water quality (Section 7.8); increased water extraction from the deep aquifers (Section 7.8); increased ambient noise levels (Section 7.11); construction of police and fire service facilities (Section 7.13); construction of school facilities (Section 7.13); development of recreation facilities (Section 7.14); degraded intersection and freeway operations (Section 7.15); and construction of wastewater treatment facilities (Section 7.16).

The proposed project would incrementally contribute to, but would not exceed, less-than-significant cumulative impacts identified in the 2003 LRDP EIR related to: increased toxic air contaminants (Section 7.3); exposure to seismic ground shaking (Section 7.6); use and transport of hazardous materials and generation of hazardous wastes (Section 7.7); exceedance of storm water drainage systems (Section 7.8); discharge of treated effluent to Putah Creek (Section 7.8); potential conflicts with land use plans, policies, or regulations (Section 7.9); inability to meet housing demand (Section 7.11); construction of libraries (Section 7.12); and expansion of water, solid waste, energy, and natural gas systems (Section 7.16).
5 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

As discussed in Section 2.3 above, it has been determined that the proposed project would not result in any potentially significant impacts that are not sufficiently addressed and mitigated by the 2003 LRDP EIR, and therefore a Negative Declaration would be appropriate. However, the campus has elected to prepare a focused Tiered EIR to provide the public and decision makers with additional information regarding the conformity of the proposed facilities with design and operational requirements for hazardous containment facilities, and as such, will include additional analysis of the environmental factors checked below.

☐ Aesthetics ☐ Agricultural Resources ☐ Air Quality

☐ Biological Resources ☐ Cultural Resources ☐ Geology, Soils & Seismicity

☑ Hazards & Hazardous Materials ☐ Hydrology & Water Quality ☐ Land Use & Planning

☐ Mineral Resources ☐ Noise ☐ Population & Housing

☐ Public Services ☐ Recreation ☐ Transportation, Circulation & Parking

☐ Utilities/Service Systems ☐ Mandatory Findings of Significance
6 DETERMINATION

On the basis of this initial evaluation:

☑ The proposed project COULD NOT have a significant effect on the environment that has not been previously addressed in the 2003 LRDP EIR, and no new mitigation measures, other than those previously identified in the 2003 LRDP EIR, are required. A NEGATIVE DECLARATION could be prepared. However, the project may be controversial due to the project location at the CNPRC and the increased use of hazardous materials, and a Tiered Environmental Impact Report will analyze the impact conclusion in certain identified areas (Please see the section of this Initial Study entitled “Scope of the Focused Tiered EIR”).

☐ The proposed project COULD have a significant effect on the environment that has not been previously addressed in the 2003 LRDP EIR, and new project-specific mitigation measures, in addition to those previously identified in the 2003 LRDP EIR, are required to reduce this effect to such a point that clearly no significant impact would occur. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ The proposed project COULD have a significant effect on the environment that has not been previously addressed in the 2003 LRDP EIR, and new project-specific mitigation measures, in addition to those previously identified in the 2003 LRDP EIR, are required to reduce this effect to such a point that clearly no significant impact would occur. A MITIGATED NEGATIVE DECLARATION could be prepared and would be the appropriate document for project approval.

☐ The proposed project MAY have a potentially significant effect on the environment that was not previously addressed in the 2003 LRDP EIR. A FOCUSED TIERED ENVIRONMENTAL IMPACT REPORT will be prepared to address new impacts not previously identified in the 2003 LRDP EIR.
7 EVALUATION OF ENVIRONMENTAL IMPACTS

Introduction

The following Environmental Checklist form is based on the checklist suggested in Appendix G of the CEQA Guidelines, and it has been adapted to assist in evaluating the environmental effects of the proposed project with respect to the analysis in the 2003 LRDP EIR.

The Environmental Checklist identifies potential project effects as corresponding to the following categories of impacts:

- **Potentially Significant Impact:** An effect that it was not previously addressed in the 2003 LRDP EIR and may be significant based on substantial evidence and the significant criteria. If the project may result in one or more Potentially Significant Impacts, an EIR is required.

- **Less than Significant with Mitigation Incorporated:** An effect that was not adequately addressed in the 2003 LRDP EIR, but with the implementation of project-specific mitigation measures, is reduced from potentially significant to less than significant.

- **Impact for Which the 2003 LRDP EIR is Sufficient:** An effect that was adequately addressed and mitigated to the extent feasible in the 2003 LRDP EIR (the Program EIR). For these effects, the Tiered Initial Study explains how the effect was addressed in the 2003 LRDP EIR and why the criteria for supplemental environmental review under CEQA Section 21166 (project changes, changed circumstances, and/or new information) have not been triggered. Effects correspond to this category under the following circumstances:
 a) The 2003 LRDP EIR found the impact would be reduced to a less-than-significant level with the implementation of applicable 2003 LRDP EIR mitigation measures;
 b) The impact is significant and unavoidable at a cumulative level, and the 2003 LRDP EIR fully addressed the cumulative impact; or
 c) The impact is significant and unavoidable at a project level, but the LRDP EIR contained an adequate project-level analysis for the impact.

- **Less than Significant Impact:** An effect for which no significant impacts, only less than significant impacts, result.

- **No Impact:** The project does not create an impact.
7.1 AESTHETICS

7.1.1 Background

Section 4.1 of the 2003 LRDP EIR addresses the aesthetics effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.1 of the 2003 LRDP EIR.

Campus

The campus is surrounded by extensive agricultural uses to the west and south, and by residential, institutional, and commercial land uses in the City of Davis to the north and east. Views within the Davis area are generally of two types: open views of agricultural land and supporting facilities with views of hills to the west, and views of developed areas within UC Davis and the City of Davis.

UC Davis consists of four general land units that have distinct visual characters. The central campus is the most developed area of campus and is characterized by varied architectural styles, large trees, and formal landscaping. The west and south campus units and Russell Ranch primarily include teaching and research fields with agricultural buildings (although the west and south campus units also include more developed areas including campus support facilities and academic and administrative facilities).

The 2003 LRDP identifies the following as valued visual elements of the central campus: the large, open lawn of the Quad at the heart of the campus; the framework of tree-lined streets, particularly around the Quad where the street tree branches arch to create a canopy overhead; the Arboretum, with its large trees and variety of landscapes along the waterway; the shingle-sided buildings from the founding years of the University Farm; buildings from the second era of campus development such as Hart Hall and Walker Hall; green open spaces that face the community along Russell Boulevard and A Street; bicycles as a distinct and valued visual emblem on campus; and the South Entry area, including the new entrance quad and the Robert and Margrit Mondavi Center for the Performing Arts.

Design review of campus development projects takes place during the project planning, design, review, and approval processes to sustain valued elements of the campus’ visual environment, to assure new projects contribute to a connected and cohesive campus environment, and to otherwise minimize adverse aesthetics effects as feasible. Formal design review by the campus Design Review Committee takes place for every major capital project. This Committee includes standing members from the Offices of Resource Management and Planning, Architects and Engineers, Grounds, and other departments concerned with potential aesthetic effects, as well as program representatives and invited design professionals with expertise relevant to the project type. Campus design standards and plans that provide the basis for design review include the 2003 LRDP, the Campus Standards and Design Guide manual, the campus Architectural Design Guidelines, and the Campus Core Study.

Project Site

Views of the CNPRC are obscured by trees planted near County Road 98 and by trees planted near the buildings and other facilities at the CNPRC. Buildings within the CNPRC are typically one-story and have an institutional appearance. Views from the CNPRC include views of the surrounding research fields and of the more distant agricultural fields.

7.1.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers an aesthetic impact significant if growth under the 2003 LRDP would:
• Have a substantial adverse effect on a scenic vista.

A scenic vista is defined as a publicly accessible viewpoint that provides expansive views of a highly valued landscape. On campus, the open view across agricultural lands west to the Coast Range is considered a scenic vista. This vista is primarily viewed from public viewpoints along SR 113, Hutchison Drive, La Rue Road, and Russell Boulevard.

• Substantially degrade the existing visual character or quality of the site and its surroundings.

For the campus, this standard is interpreted in terms of the effect of development under the 2003 LRDP on the valued elements of the visual landscape identified in the LRDP, or the effect associated with allowing incompatible development in or near areas with high visual quality such as Putah Creek and the Arboretum Waterway.

• Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area.

An additional standard from the CEQA Guidelines' Environmental Checklist (“b” in the checklist below) was found not applicable to campus growth under the 2003 LRDP.

7.1.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on aesthetics are evaluated in Section 4.1 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant and potentially significant aesthetics impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. Mitigation measures are relevant to reduce the magnitude of cumulative impact 4.1-6, but this impact is identified as significant and unavoidable because the feasibility and/or implementation of mitigation falls within other jurisdictions and therefore cannot be guaranteed by the University of California.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AESTHETICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1-3</td>
<td>Development under the 2003 LRDP could create substantial light or glare on campus that could adversely affect daytime or nighttime views in the area.</td>
<td>PS</td>
</tr>
<tr>
<td>4.1-6</td>
<td>Implementation of the 2003 LRDP together with cumulative development in the region would create new sources of light and glare that could adversely affect daytime or nighttime views in the region.</td>
<td>S</td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.
2003 LRDP EIR Mitigation Measures

AESTHETICS

4.1-3(a) Design for specific projects shall provide for the use of textured nonreflective exterior surfaces and nonreflective glass.

4.1-3(b) Except as provided in LRDP Mitigation 4.1-3(c), all new outdoor lighting shall utilize directional lighting methods with shielded and cutoff type light fixtures to minimize glare and upward directed lighting.

4.1-3(c) Non-cutoff, non-shielded lighting fixtures used to enhance nighttime views of walking paths, specific landscape features, or specific architectural features shall be reviewed by the Campus Design Review Committee prior to installation to ensure that: (1) the minimum amount of required lighting is proposed to achieve the desired nighttime emphasis, and (2) the proposed illumination creates no adverse effect on nighttime views.

4.1-3(d) The campus will implement the use of the specified lighting design and equipment when older lighting fixtures and designs are replaced over time.

4.1-6(a) Implement LRDP Mitigation 4.1-3(a) and (b).

4.1-6(b) The City of Davis and other surrounding jurisdictions can and should adopt (if necessary) and implement development standards and guidelines, which support the minimal use of site lighting for new developments.

7.1.4 Environmental Checklist and Discussion

The following section addresses the effects of the proposed project on visual resources.

<table>
<thead>
<tr>
<th>Would the project…</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) A scenic vista is defined as an expansive view of a highly valued landscape from a publicly accessible viewpoint. On and near campus, viewpoints along SR 113, Hutchison Drive, La Rue Road, and Russell Boulevard provide scenic vistas to the west across agricultural land to the Coast Range. The proposed project would have no effect on a scenic vista. No impact would occur.

b,c) The campus is not located near a state scenic highway. However, the 2003 LRDP EIR found that development on campus under the 2003 LRDP could degrade the visual character of the campus by substantially degrading the valued elements of the campus’ visual landscape, which are identified above in the background discussion and include specific treed areas, historic buildings, and open space areas (Impact 4.1-2). The proposed project would have no effects on scenic resources. The proposed buildings would not be located near areas of high visual quality such as Putah Creek and the Arboretum Waterway. No impact would occur.

d) The 2003 LRDP EIR found that development on campus under the 2003 LRDP could create substantial light or glare that could adversely affect daytime or nighttime views in the area.
(Impact 4.1-3). The proposed project would include illumination around the building perimeter that would contribute to light to the areas within the CNPRC. In compliance with LRDP Mitigation 4.1-3(a), the project would use textured nonreflective exterior surfaces and nonreflective glass. In compliance with LRDP Mitigation 4.1-3(b-c), new outdoor lighting associated with the project would use directional lighting methods with shielded and cutoff type light fixtures to minimize glare and upward directed lighting, except in specific, limited locations to enhance nighttime views of walking paths, specific landscape features, or specific architectural features. In compliance with this measure, the Campus Design Review Committee will also review the proposed project’s use of non-directional lighting design to ensure that no adverse effects on nighttime views occur. In compliance with LRDP Mitigation 4.1-3(d), the campus will replace older lighting fixtures over time with directional lighting. With implementation of LRDP Mitigation 4.1-3(a-d), which is included in the proposed project, the project’s impact associated with light and glare would be less than significant.

The 2003 LRDP EIR found that campus development under the 2003 LRDP in conjunction with other development in the region would add new sources of light and glare that could adversely affect daytime or nighttime views in the area (Impact 4.1-6). LRDP Mitigation 4.1-6(a), included in the proposed project, requires the campus to implement Mitigation Measure 4.1-3(a) and (b), discussed above. LRDP Mitigation 4.1-6(b) indicates that local jurisdictions can and should adopt and implement development standards and guidelines that support reduced lighting. However, the feasibility and/or implementation of LRDP Mitigation 4.1-6(b) cannot be guaranteed by the University of California because enforcement and monitoring fall within other jurisdictions. For this reason, the impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

Summary

Mitigation measures 4.1-3(a-d), 4.1-6(a,b) from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of aesthetics impacts to the extent feasible. The proposed project would not exceed the levels of significance of aesthetics impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant aesthetics impacts that were not previously addressed.
7.2 Agricultural Resources

7.2.1 Background

Section 4.2 of the 2003 LRDP EIR addresses the agricultural resources effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.2 of the 2003 LRDP EIR.

Campus

As discussed in the 2003 LRDP EIR, of the approximately 5,300 acres of campus land, the California Department of Conservation’s Farmland Mapping and Monitoring Program (FMMP) designates approximately 3,700 acres as Prime Farmland and approximately 90 acres as Farmland of Local Importance. The FMMP designates the remaining 1,520 acres of campus land as Urban and Built-Up (approximately 1,400 acres) and Other Land (approximately 120 acres). Most of the campus’ agricultural lands are located on the west and south campuses and at Russell Ranch. The central campus includes land primarily designated as Urban and Built-Up, but small areas within the central campus that are used for teaching and research fields and community gardens are designated as Prime Farmland.

The 2003 LRDP EIR identifies that development under the 2003 LRDP through 2015-16 could result in conversion of approximately 745 acres of campus land that is considered prime farmland by the California Department of Conservation to nonagricultural uses. Approximately 330 acres of this land would be converted to habitat at Russell Ranch, which would not result in an irreversible loss of prime soil. Mitigation under the 2003 LRDP EIR requires the conservation of prime farmland at a one-to-one (1:1) ratio for prime farmland converted to developed uses and a one-third-to-one (1/3:1) ratio for prime farmland converted to habitat at Russell Ranch.

Project Site

No agricultural resources are located on or adjacent to the project sites. The project sites are designated as Urban and Built-Up land on the FMMP.

7.2.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers an agricultural impact significant if growth under the 2003 LRDP would:

- Convert prime farmland, unique farmland or farmland of statewide importance, as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency to nonagricultural use.

- Involve other changes in the existing environment which, due to their location or nature, could result in conversion of farmland considered prime, unique, or of statewide importance to nonagricultural use.

- Conflict with existing zoning for agricultural use or a Williamson Act contract.

7.2.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on agricultural resources are evaluated in Section 4.2 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the
proposed project is within the scope of analysis in the 2003 LRDP EIR. The project is not located on or adjacent to agricultural land and accordingly, would have no effect on agricultural resources.

7.2.4 Environmental Checklist and Discussion

The following section addresses the effects of the proposed project on agricultural resources.

<table>
<thead>
<tr>
<th>AGRICULTURAL RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

- a) The project site is designated by the FMMP as Urban and Built-Up land. The proposed project would have no effect on farmland. No impact would occur.

- b) Campus lands are state lands and are not eligible for Williamson Act agreements, nor are they subject to local zoning controls. Therefore, the proposed project would not conflict with an existing zoning for agricultural use or a Williamson Act contract, and no impact would occur.

- c) The proposed project would result in no changes to land use and no changes to farmland. No impact would occur.

Summary

No LRDP EIR Mitigation Measures from the 2003 LRDP EIR are relevant to the proposed project for agricultural resource impacts. The proposed project would not exceed the levels of significance of agricultural impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant impacts that were not previously addressed.
7.3 Air Quality

7.3.1 Background

Section 4.3 of the 2003 LRDP EIR addresses the air quality effects of campus growth under the 2003 LRDP on air quality. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.3 of the 2003 LRDP EIR. However, the federal and state attainment status of the Sacramento Valley Air Basin was confirmed or updated based on current information.

Campus

The campus is subject to air quality regulation programs under both the federal Clean Air Act (CAA) and the California Clean Air Act (CCAA). Both the federal and state statutes provide for ambient air quality standards to protect public health, timetables for progressing toward achieving and maintaining ambient standards, and the development of plans to guide the air quality improvement efforts of state and local agencies. Within the campus vicinity, air quality is monitored, evaluated, and controlled by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and the Yolo-Solano Air Quality Management District (YSAQMD). The YSAQMD is one of five air districts located in the Sacramento Valley Air Basin (SVAB) and has jurisdiction over air quality in the Yolo County and the northeastern portion of Solano County.

Historically, air quality laws and regulations have divided air pollutants into two broad categories: “criteria pollutants” and “toxic air contaminants.” Federal and state air quality standards have been established for the following ambient air pollutants, which are called criteria pollutants: ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter less than 10 microns in diameter (PM₁₀), lead (Pb), and particulate matter less than 2.5 microns in diameter (PM₂.₅). Ozone is evaluated by assessing emissions of its precursors: reactive organic gases (ROG) and NO₂.

Toxic air contaminants (TACs) are airborne pollutants for which there are no air quality standards but are known to have adverse human health effects. TACs are regulated under federal and state statutes, primarily with control technology requirements for stationary and mobile sources and mitigation established following human health risk assessments. Air toxics are generated by a number of sources, including stationary sources, such as dry cleaners, gas stations, combustion sources, and laboratories; mobile sources, such as automobiles; and area sources, such as farms, landfills, construction sites, and residential areas.

Air quality on campus on any given day is influenced by both meteorological conditions and pollutant emissions. In general, meteorological conditions vary more than pollutant emissions from day to day, and therefore, tend to have a greater influence on changes in measured ambient pollutant concentrations. Ambient concentrations of CO and PM₁₀ are particularly influenced by local emission sources. The EPA has classified the entire SVAB, which includes the campus, as a serious nonattainment area for O₃ (Sacramento Metropolitan Air Quality Management District, 2006). The CARB has also designated the area as being in nonattainment under the state ambient air quality standards for O₃ and PM₁₀ (Yolo-Solano Air Quality Management District, 2005). The designation of an area as attainment and nonattainment is based on monitored data throughout the SVAB.

Project Site

The project site is located on the West Campus within the existing CNPRC complex. Sensitive receptors in the vicinity of the project include the existing academic and administrative facilities of the CNPRC, and a church and school (Kindergarten through 9th grade) about 1,400 feet to the
northeast of the project site. To the north and east of the church and school is a residential subdivision, which is about 1,600 feet to the northeast of the project site, at its closest point. Another single-family home is located about 1,400 feet southeast of the project site. Existing odor and air emission sources in the project area include other CNPRC laboratories and animal holding facilities, agricultural operations both on- and off-campus, and traffic on area roadways.

7.3.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers an air quality impact significant if growth under the 2003 LRDP would:

Criteria Pollutants

- Conflict with or obstruct implementation of the applicable air quality plan.
- Violate any air quality standard or contribute substantially to an existing or projected air quality violation. (According to the YSAQMD, emissions of NOx and ROG in excess of 82 pounds a day, CO emissions in excess of 550 pounds a day, and 150 pounds a day for PM$_{10}$ would be considered significant.)
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
- Expose sensitive receptors to substantial pollutant concentrations.
- Create objectionable odors affecting a substantial number of people.

Toxic Air Contaminants

- Contribute to the probability of contracting cancer for the Maximally Exposed Individual (MEI) exceeding the AB 2588 and Proposition 65 threshold of 10 in one million.
- Result in a noncarcinogenic (chronic and acute) health hazard index greater than the AB 2588 threshold of 1.0.

7.3.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on air quality are evaluated in Section 4.3 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of proposed growth and development previously analyzed in the 2003 LRDP EIR. Significant and potentially significant air quality impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. The 2003 LRDP EIR concluded that even with mitigation, project-level impacts 4.3-1 and 4.3-3, and cumulative impact 4.3-6 are significant and unavoidable because they cannot be fully mitigated.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR QUALITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3-1</td>
<td>Implementation of the 2003 LRDP would result in daily operational emissions above the YSAQMD thresholds that may contribute substantially to a violation</td>
<td>S</td>
</tr>
</tbody>
</table>
2003 LRDP EIR Impacts
AIR QUALITY

4.3-3	Emissions from construction activities associated with the 2003 LRDP would exceed YSAQMD thresholds.	S	SU
4.3-6	Implementation of the 2003 LRDP, in conjunction with other regional development, would result in a cumulatively considerable increase of non-attainment pollutants.	S	SU
4.3-8	Regional growth could result in an increase in toxic air contaminants if compensating technological improvements are not implemented.	PS	LS

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures
AIR QUALITY

4.3-1(a) Vehicular Sources. The following measures will be implemented to reduce emissions from vehicles, as feasible.
- The campus shall continue to actively pursue Transportation Demand Management to reduce reliance on private automobiles for travel to and from the campus.
- Provide pedestrian-enhancing infrastructure to encourage pedestrian activity and discourage vehicle use.
- Provide bicycle facilities to encourage bicycle use instead of driving.
- Provide transit-enhancing infrastructure to promote the use of public transportation.
- Provide facilities to accommodate alternative-fuel vehicles such as electric cars and CNG vehicles.
- Improve traffic flows and congestion by timing of traffic signals to facilitate uninterrupted travel.
- When the campus purchases new vehicles, the campus will evaluate the practicality and feasibility of acquiring low-pollution vehicles that are appropriate for the task and will purchase these types of vehicles when practical and feasible. When replacing diesel engines in existing equipment, the campus will install up-to-date technology.

4.3-1(b) Area Sources. The following measures will be implemented to reduce emissions from area sources, as feasible.
- Use solar or low-emission water heaters in new or renovated buildings.
- Orient buildings to take advantage of solar heating and natural cooling and use passive solar designs.
- Increase wall and attic insulation in new or renovated buildings.
- For fireplaces or wood-burning appliances, require low-emitting EPA certified wood-burning appliances, or residential natural-gas fireplaces.
- Provide electric equipment for landscape maintenance.

4.3-1(c) The campus will work with the YSAQMD to ensure that emissions directly and indirectly associated with the campus are adequately accounted for and mitigated in applicable air quality planning efforts. The YSAQMD can and should adopt adequate measures consistent with applicable law to ensure that air quality standard violations are avoided.
4.3-3(a) The campus shall include in all construction contracts the measures specified below to reduce fugitive dust impacts, including but not limited to the following:

- All disturbed areas, including storage piles, which are not being actively utilized for construction purpose, shall be effectively stabilized of dust emissions using water, chemical stabilizer/suppressant, or vegetative ground cover.

- All on-site unpaved roads and off-site unpaved access roads shall be effectively stabilized of dust emissions using water or chemical stabilizer/suppressant.

- All land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, and demolition activities shall be effectively controlled of fugitive dust emissions utilizing application of water or by presoaking.

- When demolishing buildings up to six stories in height, all exterior surfaces of the building shall be wetted during demolition.

- When materials are transported off-site, all material shall be covered, effectively wetted to limit visible dust emissions, or at least two feet of freeboard space from the top of the container shall be maintained.

- All operations shall limit or expeditiously remove the accumulation of mud or dirt from adjacent public streets at least once every 24 hours when operations are occurring. The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust emissions. Use of blower devices also is expressly forbidden.

- Following the addition of materials to, or the removal of materials from, the surface of outdoor storage piles, said piles shall be effectively stabilized of fugitive dust emissions by utilizing sufficient water or chemical stabilizer/suppressant.

4.3-3(b) The campus shall include in construction contracts for large construction projects near receptors, the following control measures:

- Limit traffic speeds on unpaved roads to 15 mph.

- Install sandbags or other erosion control measures to prevent silt runoff to public roadways from sites with a slope greater than one percent.

- To the extent feasible, limit area subject to excavation, grading, and other construction activity at any one time.

- Limit the area subject to excavation, grading, and other construction activity at any one time.

4.3-3(c) The campus shall implement the following control measures to reduce emissions of ozone precursors from construction equipment exhaust:

- To the extent that equipment is available and cost effective, the campus shall encourage contractors to use alternate fuels and retrofit existing engines in construction equipment.

- Minimize idling time to a maximum of 5 minutes when construction equipment is not in use.

- To the extent practicable, manage operation of heavy-duty equipment to reduce emissions.

- To the extent practicable, employ construction management techniques such as timing construction to occur outside the ozone season of May through October, or scheduling equipment use to limit unnecessary concurrent operation.

4.3-6 Implement LRDP Mitigation 4.3-1(a-c).

4.3-8 EPA and CARB are expected to continue the development and implement programs to reduce air toxics, and UC Davis will continue its efforts in this area.
7.3.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>AIR QUALITY</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

a,b,c,d) Construction

The 2003 LRDP EIR found that construction activities under the 2003 LRDP could exceed YSAQMD thresholds (Impact 4.3-3). The state 24-hour PM\(_{10}\) standards could be violated when multiple construction projects (especially those involving ongoing grading or excavation activities) occur simultaneously in the same area. Housing or other sensitive receptors located adjacent to construction areas could be affected by high concentrations of PM\(_{10}\). In addition, exhaust pollutants would be emitted during use of construction equipment.

Given the limited area that would be disturbed to construct the proposed project (less than one acre), and the limited scale of the proposed buildings (a 10,000 gsf building and four smaller modular buildings totaling 6,000 gsf) and associated utilities, construction activities for the proposed project are not expected to result in emissions of criteria pollutants that would exceed the Air District’s emission thresholds. Furthermore, LRDP Mitigation 4.3-3(a) (requiring campus construction contracts to include measures to reduce fugitive dust impacts), and 4.4-3(c) (requiring control measures to reduce emissions of ozone precursors from construction equipment exhaust) are relevant in the proposed project and would minimize construction emissions. Implementation of the identified measures is expected to minimize the total construction emissions that would occur and to reduce the impact to a less-than-significant level.

The 2003 LRDP EIR found that the impact of the cumulative emissions from the totality of projects under construction at any given time under the 2003 LRDP could be significant and unavoidable. The impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.
Operation

Criteria Pollutants

The proposed project would increase the population on the campus and in the CNPRC complex by about 20 persons. In addition, the project includes laboratory space and an emergency generator to serve as a back-up during an electrical outage. Emissions of criteria pollutants would be associated with vehicle trips from the new population, operation of the lab space, and the periodic testing of the emergency generator.

The 2003 LRDP EIR found that operational emissions under the 2003 LRDP could substantially contribute to violation of ambient state and federal air quality standards or hinder the attainment of the regional air quality plan (LRDP Impact 4.3-1). The project would contribute to this impact. The campus is located in an area that is in nonattainment of \(\text{O}_3 \) and PM\text{10} standards. The Sacramento Regional Clean Air Plan, which covers the campus, contains strategies for lowering the region’s emissions to meet the \(\text{O}_3 \) standard by 2005. However, campus growth under the 2003 LRDP through 2015-16 is not addressed by the current Clean Air Plan. LRDP Mitigation 4.3-1(a-b), which includes measures that encourage alternative transportation and no- or low-emission building designs and operations, would help reduce daily emissions from campus vehicular and stationary sources. LRDP Mitigation 4.3-1(c) would ensure that the campus will coordinate with the YSAQMD during the update of the Clean Air Plan and other applicable air quality planning efforts. However, given the likelihood of exceedance even with mitigation, it appears that the implementation of the 2003 LRDP, including the proposed project, could potentially hinder the attainment of the regional air quality plan. The impact is therefore considered significant and unavoidable at the LRDP program level. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

Toxic Air Contaminants

The proposed project includes about 8,000 asf of wet laboratory space. Health Risk Assessment (HRA) calculations performed as part of the 2003 LRDP EIR modeled the potential human health risks from an increase in campus laboratory space, including additional laboratory space within CNPRC complex. The 2003 HRA assumed a greater amount of additional laboratory space would be constructed at the CNPRC complex than the 8,000 asf which is included in the proposed project. The HRA analysis assumed that the volume of emissions of toxic air contaminants is directly proportional to the square footage of the wet lab and assumed that four new large buildings, two smaller buildings, and associated emergency generators would be constructed during the implementation period of the 2003 LRDP (URS 2003). Given that the amount of wet lab space included in the proposed project is much less than the future wet lab space modeled for the CNPRC complex, the proposed project is within the scope of the previously conducted campus-wide HRA.

The HRA predicted that the cancer risk from campus operations through academic year 2015-16 will be below 10 in one million for both the off-campus and on-campus Maximally Exposed Individual, assuming a 70-year exposure period. The non-cancer health risk was calculated to be below 1.0 on the hazard index. Therefore, the 2003 LRDP EIR concluded that development under the 2003 LRDP would not exceed either health risk standard, and the impact associated with TAC generation would be less than significant. Consistent with the 2003 LRDP EIR, the project’s impact associated with TAC emissions is expected to be less than significant.
Cumulative Development

The 2003 LRDP EIR found that implementation of the 2003 LRDP, in conjunction with other regional development, would contribute to emissions of criteria pollutants for which the region is in non-attainment status and could hinder attainment efforts (LRDP Impact 4.3-6). The YSAQMD has accounted for a certain amount of regional growth in the existing Sacramento Regional Clean Air Plan. This plan is currently being updated to extend beyond the year 2005, and campus growth under the 2003 LRDP will be incorporated in the plan update. LRDP Mitigation 4.3-6, included in the proposed project, requires implementation of LRDP Mitigation 4.3-1 (a-c). Regardless, because the YSAQMD remains a nonattainment area for ozone, this cumulative impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. While the proposed project will contribute to this impact, no conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

e) The 2003 LRDP EIR concluded that odor impacts associated with development under the 2003 LRDP would be less than significant. No specific odor sources are associated with the proposed project, therefore there would be no impact.

Summary

Mitigation measures 4.3-1(a-c), 4.3-3(a-c), 4.3-6, and 4.3-8 from the 2003 LRDP EIR are included in the proposed project to reduce the significance of air quality impacts to the extent feasible. The proposed project would not likely exceed the levels of significance of air quality impacts previously addressed in the 2003 LRDP EIR, nor would it likely introduce any new significant air quality impacts that were not previously addressed.
7.4 Biological Resources

7.4.1 Background

Section 4.4 of the 2003 LRDP EIR addresses the effects of campus growth under the 2003 LRDP on biological resources. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.4 of the 2003 LRDP EIR.

Campus

The 5,300-acre campus is located in a region that is composed primarily of agricultural lands that include remnant riparian areas and urban areas. Habitat types on campus can be classified as Agricultural Lands (including Cropland/Pasture, and Orchard/Vineyard), Valley Foothill Riparian Woodland, Ruderal/Annual Grassland, Open Water Ponds, Riverine, and Urban Landscaping/Developed.

The 2003 LRDP EIR considers special status species to be those taxa that are: (1) listed as threatened or endangered under either the California or Federal Endangered Species Acts; (2) candidates for either state or federal listing; (3) species afforded protection under the Fish and Game Code of California; (4) federal and California Department of Fish and Game (CDFG) “Species of Special Concern”; (5) CDFG “Species of Special Concern” highest and second priority lists; (6) and California Native Plant Society (CNPS) List 1-3 plants.

A database search identified 15 special status plant species, 8 special status invertebrates, 11 special status fish, 3 special status amphibians, 3 special status reptiles, 26 special status birds, and 7 special status mammals that have the potential to occur on or within a 10-mile radius of the campus. However, only a few of these species are known to occur on campus or have potential habitat present on campus, including: the northern California black walnut, burrowing owl, Swainson’s hawk, valley elderberry longhorn beetle, California tiger salamander, chinook salmon, giant garter snake, steelhead, and the northwestern pond turtle.

Project Site

The proposed project sites for the five buildings are designated as Urban Landscaping/Developed habitat type in the 2003 LRDP EIR. The conditions at the project sites have not changed since completion of the 2003 LRDP EIR. The area is within the developed perimeter of the CNPRC on an area that formally was in agriculture but for at least the past decade has been managed for weed and rodent control.

7.4.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a biological resources impact significant if growth under the 2003 LRDP would:

- Result in a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game (CDFG) or U.S. Fish and Wildlife Service (USFWS).

- Result in the “take” (defined as kill, harm, or harass) of any listed threatened or endangered species or the habitat of such species.
• Result in a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the CDFG or USFWS.

• Result in a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means.

• Interfere substantially with the movement of any native resident or migratory fish, or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites.

• Conflict with any local applicable policies protecting biological resources.

An additional standard from the CEQA Guidelines' Environmental Checklist (“f” in the checklist below) was found not applicable to campus growth under the 2003 LRDP.

7.4.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on biological resources are evaluated in Section 4.4 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. No significant impacts identified in the 2003 LRDP EIR related to biological resources are relevant to the proposed project.

7.4.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>BIOLOGICAL RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>✓</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>✓</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>✓</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>✓</td>
</tr>
</tbody>
</table>
a) **Plants**

The project sites are within the developed area of the CNPRC and no rare plants are within this area. No impact would occur.

Wildlife

The project sites are within the developed area of the CNPRC, no trees are present on the site, and no Swainson’s hawks have nested within ½ mile of the project area. No impact would occur.

b,c) No riparian or wetland areas exist on the project site. The proposed project would have no effect on riparian and wetland areas. No impact would occur.

d) The Putah Creek corridor is the principal corridor for the movement of native resident and migratory fish and wildlife through the UC Davis campus. It is the regional connection between the hills in western Yolo County and the Sacramento River. The proposed project are approximately ½ mile from the Putah Creek Corridor. Therefore, the project would not interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites. No impact would occur.

e) The project sites contain no trees. No impact to trees would occur.

f) The campus does not fall within the boundaries of, nor is it adjacent to, an adopted regional Habitat Conservation Plan (HCP) or Natural Community Conservation Plan (NCCP). The campus has implemented two low effects HCPs for VELB at Russell Ranch approximately 2 miles west of the CNRCP. The project is not located at Russell Ranch. Therefore, the proposed project would not conflict with an adopted HCP or NCCP.

Summary

No biological resource mitigation measures from the 2003 LRDP EIR are relevant to the proposed project. The proposed project would not exceed the levels of significance of biological resource impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant biological resource impacts that were not previously addressed.
7.5 CULTURAL RESOURCES

7.5.1 Background

Section 4.5 of the 2003 LRDP EIR addresses the effects of campus growth under the 2003 LRDP on cultural resources. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.5 of the 2003 LRDP EIR.

Campus

Cultural resources on campus include prehistoric and historic resources. Prehistoric resources are those sites and artifacts associated with the indigenous, non-Euroamerican population, generally dating prior to contact with people of European descent. Historic resources include structures, features, artifacts, and sites that date from Euroamerican settlement of the region.

Archaeological Resources

The campus lies in the ethnographic territory of the Patwin. Since 1991, extensive archaeological investigations (survey, testing, monitoring, and/or excavation) have been conducted on campus in conjunction with the development of campus projects (Nadolski 2003). Patwin sites, including burials, have been identified at several locations on the central campus. Areas within 800 feet of the banks of the historic channel of Putah Creek and its tributaries and slough channels, and within 800 feet of specific known archaeological sites, have been identified as archaeologically sensitive zones on campus.

Historic Resources

The earliest direct historic contacts in the Davis area probably occurred during 1806 to 1808. Farming on a large scale began in the Davis area in the 1850s. A “university farm” was established at Davis in 1906, classes began in 1909, and Davis became a general University of California campus in 1959. No properties within the campus are listed on the National Register of Historic Places. Six properties on or near the campus have been recorded with the California Inventory of Historic Resources. Historic architectural features typically must be at least 50 years of age to be considered for listing on the California Register of Historical Resources (CRHR).

Project Site

The proposed project sites are within the CNPRC at UC Davis and previous surveys within the CNPRC have not detected cultural resource materials. The area is not within a zone of cultural sensitivity and no cultural resources are expected at the project sites.

7.5.2 2003 LRDP EIR Standards of Significance

In addition to the following archaeological and historical standards of significance identified in the 2003 LRDP EIR, an additional standard from the CEQA Guidelines’ Environmental Checklist (“c” in the checklist below) was found not applicable to campus growth under the 2003 LRDP.

Archaeological Resources

The 2003 LRDP EIR considers an impact on archaeological resources significant if growth under the 2003 LRDP would:
• Cause a substantial adverse change in the significance of a unique archaeological resource pursuant to CEQA Guideline § 15064.5.

• Disturb any human remains, including those interred outside of formal cemeteries.

A “unique archaeological resource” is defined under CEQA through Public Resources Code Section 21083.2(g). A unique archaeological resource implies an archaeological artifact, object, or site about which it can be clearly demonstrated that there is a high probability that it meets one of the following criteria:

• The archaeological artifact, object, or site contains information needed to answer important scientific questions and there is a demonstrable public interest in that information, or

• The archaeological artifact, object, or site has a special and particular quality, such as being the oldest of its type or the best available example of its type, or

• The archaeological artifact, object, or site is directly associated with a scientifically recognized important prehistoric or historic event or person.

For a resource to qualify as a unique archaeological resource, the agency must determine that there is a high probability that the resource meets one of these criteria without merely adding to the current body of knowledge (PRC § 21083.2(g)). An archaeological artifact, object, or site that does not meet the above criteria is a nonunique archaeological resource (PRC § 21083.2(h)). An impact on a nonunique resource is not a significant environmental impact under CEQA (CEQA Guideline § 15064.5(c)(4)). If an archaeological resource qualifies as a historical resource under CRHR or other criteria, then the resource is treated as a historical resource for the purposes of CEQA (CEQA Guideline § 15064.5(c)(2)).

Section 15064.5 of the CEQA Guidelines assigns special importance to human remains and specifies procedures to be used when Native American remains are discovered. These procedures are detailed under PRC § 5097.98. California Health and Safety Code § 7050.5(b) prohibits disturbance of human remains uncovered by excavation until the Coroner has made a finding relative to PRC § 5097 procedures.

Historical Resources

For the purposes of this EIR, as mandated by PRC § 21083.2, impacts of the proposed project on an historical resource would be considered significant if it would:

• cause a significant adverse change in the significance of a historical resource as defined in CEQA Guideline § 15064.5.

The standards of significance for historical resources are based on Appendix G and § 15064.5 of the CEQA Guidelines. Accordingly, historical resources include resources listed in, or determined to be eligible for listing in, the CRHR; resources included in a qualifying local register (such as the City of Davis Register of Historic Resources); and resources that the lead agency determines to meet the criteria for listing in the CRHR. These criteria may apply to any historic built environmental feature, and to historic or prehistoric archaeological sites. Properties or sites that are eligible for inclusion in the CRHR are termed “historical resources.” Under the provisions of CEQA Guideline Section 15064.5(a)(3) generally, a lead agency should find that a property is historically significant if it determines that the property meets one or more of the criteria for listing on the CRHR, which extend to any building, structure, feature or site that:
• is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;
• is associated with lives of persons important in our past;
• embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
• has yielded, or may be likely to yield, information important in prehistory or history

With few exceptions, to qualify as a historical resource a property must be at least 50 years old and also must retain physical integrity and integrity to its period of significance. For historic structures and buildings, significantly altering the setting, remodeling, or moving the structure may diminish or destroy its integrity. However, under some conditions, a building that has been moved or altered may still retain its historic significance. Landscaping or landscape features may in some cases contribute to the significance of an historic architectural property. Such elements would be assessed as part of the evaluation of the related historic architectural property. Archaeological sites may also qualify as historical resources under CEQA Guideline Section 15064.5(a)(3). Archaeological sites most often are assessed relative to CRHR Criterion D (for potential to yield data important to history or prehistory). An archaeological deposit that has been extensively disturbed and archaeological artifacts found in isolation may not be eligible for listing on the CRHR, because the lack of stratigraphic context may reduce the potential for the resource to yield significant data. A resource that does not meet one of the criteria for eligibility to the CRHR is not a historical resource under CEQA, and impacts to such a property are not significant.

7.5.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on cultural resources are evaluated in Section 4.5 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant and potentially significant cultural resources impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. The 2003 LRDP EIR mitigation measures are included to reduce the magnitude of project-level impact 4.5-3 and cumulative impact 4.5-5, but these impacts were identified as significant and unavoidable because they cannot be fully mitigated.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULTURAL RESOURCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5-1 Implementation of the 2003 LRDP could damage or destroy an archaeological resource or historic building or structure as the result of grading, excavation, ground disturbance or other project development.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>4.5-2 Implementation of the LRDP could cause a substantial adverse change in the significance of a historical resource or unique archaeological resource, as defined in CEQA guidelines 15064.5, as the result of ground disturbance, alteration, removal or demolition associated with project development.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>4.5-3 Implementation of the LRDP could cause a substantial adverse change in the significance of a historical resource or unique archaeological resource, as defined in CEQA guidelines 15064.5, and the values that contribute to the significance of the resource cannot be preserved through documentation and data recovery.</td>
<td>S</td>
<td>SU</td>
</tr>
<tr>
<td>4.5-4 Implementation of the 2003 LRDP could disturb human remains, including</td>
<td>PS</td>
<td>LS</td>
</tr>
</tbody>
</table>
Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Impacts
CULTURAL RESOURCES

<table>
<thead>
<tr>
<th>4.5-5</th>
<th>Development under the 2003 LRDP would contribute to cumulative damage to and loss of the resource base of unique archaeological resources and historical resources (including archaeological sites and historic buildings and structures) in Yolo and Solano counties.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

4.5-1(a) As early as possible in the project planning process, the campus shall define the project’s area of potential effects (APE) for archaeological resources and, if structures are present on the site, for historic structures. The campus shall determine the potential for the project to result in cultural resource impacts, based on the extent of ground disturbance and site modification anticipated for the proposed project. Based on this information, the campus shall:

(i) Prepare an inventory of all buildings and structures within the APE that will be 50 years of age or older at the time of project construction for review by a qualified architectural historian. If no structures are present on the site, there would be no impact to historic built environment resources from the project. If potentially historic structures are present, LRDP Mitigation 4.5-1(c) shall be implemented.

(ii) Determine the level of archaeological investigation that is appropriate for the project site and activity, as follows:

- Minimum: excavation less than 18 inches deep and in a relatively small area (e.g., a trench for lawn irrigation, tree planting, etc.). Implement LRDP Mitigation 4.5-1(b)(i).
- Moderate: excavation below 18 inches deep and/or over a large area on any site that has not been characterized and is not suspected to be a likely location for archaeological resources. Implement LRDP Mitigation 4.5-1 (b)(i) and (ii).
- Intensive: excavation below 18 inches and/or over a large area on any site that is within 800 feet of the historic alignment of Putah Creek, or that is adjacent to a recorded archaeological site. Implement LRDP Mitigation 4.5-1 (i), (ii) and (iii).

4.5-1(b) During the planning phase of the project, the campus shall implement the following steps to identify and protect archaeological resources that may be present in the APE:

(i) For project sites at all levels of investigation, contractor crews shall be required to attend an informal training session prior to the start of earth moving, regarding how to recognize archaeological sites and artifacts. In addition, campus employees whose work routinely involves disturbing the soil shall be informed how to recognize evidence of potential archaeological sites and artifacts. Prior to disturbing the soil, contractors shall be notified that they are required to watch for potential archaeological sites and artifacts and to notify the campus if any are found. In the event of a find, the campus shall implement item (vi), below.

(ii) For project sites requiring a moderate or intensive level of investigation, a surface survey shall be conducted by a qualified archaeologist during project planning and design and prior to soil disturbing activities. For sites requiring moderate investigation, in the event of a surface find, intensive investigation will be implemented, as per item (iii), below. Irrespective of findings, the qualified archaeologist shall, in consultation with the campus, develop an archaeological monitoring plan to be implemented during the construction phase of the project. The frequency and duration of monitoring
shall be adjusted in accordance with survey results, the nature of construction activities, and results during the monitoring period. In the event of a discovery, the campus shall implement item (vi), below.

(iii) For project sites requiring intensive investigation, irrespective of subsurface finds, the campus shall retain a qualified archaeologist to conduct a subsurface investigation of the project site, to ascertain whether buried archaeological materials are present and, if so, the extent of the deposit relative to the project’s area of potential effects. If an archaeological deposit is discovered, the archaeologist will prepare a site record and file it with the California Historical Resource Information System.

(iv) If it is determined through step (iii), above, that the resource extends into the project’s area of potential effects, the resource will be evaluated by a qualified archaeologist, who will determine whether it qualifies as a historical resource or a unique archaeological resource under the criteria of CEQA Guidelines § 15064.5. If the resource does not qualify, or if no resource is present within the project area of potential effects (APE), this will be noted in the environmental document and no further mitigation is required unless there is a discovery during construction (see (vi), below).

(v) If a resource within the project APE is determined to qualify as an historical resource or a unique archaeological resource (as defined by CEQA), the campus shall consult with the qualified archaeologist to consider means of avoiding or reducing ground disturbance within the site boundaries, including minor modifications of building footprint, landscape modification, the placement of protective fill, the establishment of a preservation easement, or other means that will permit avoidance or substantial preservation in place of the resource. If avoidance or substantial preservation in place is not possible, the campus shall implement LRDP Mitigation 4.5-2(a).

(vi) If a resource is discovered during construction (whether or not an archaeologist is present), all soil disturbing work within 100 feet of the find shall cease. The campus shall contact a qualified archaeologist to provide and implement a plan for survey, subsurface investigation as needed to define the deposit, and assessment of the remainder of the site within the project area to determine whether the resource is significant and would be affected by the project. LRDP Mitigation 4.5-1(b), steps (iii) through (vii) shall be implemented.

(vii) A written report of the results of investigations will be prepared by a qualified archaeologist and filed with the appropriate Information Center of the California Historical Resources Information System.

4.5-3 If a significant historic resource or unique archaeological resource cannot be preserved intact, before the property is damaged or destroyed the campus shall ensure that the resource is appropriately documented, as follows.

(i) For a built environment feature, appropriate documentation is described under LRDP 4.5-2(b).

(ii) For an archaeological site, a program of research-directed data recovery shall be conducted and reported, consistent with LRDP Mitigation 4.5-2(a).

4.5-4(a) Implement LRDP Mitigation 4.5-1, 4.5-2 and 4.5-3 to minimize the potential for disturbance or destruction of human remains in an archaeological context and to preserve them in place, if feasible.

4.5-4(c) In the event of a discovery on campus of human bone, suspected human bone, or a burial, all excavation in the vicinity will halt immediately and the area of the find will be protected until a qualified archaeologist determines whether the bone is human. If the qualified archaeologist determines the bone is human, or if a qualified archaeologist is not present, the campus will notify the Yolo or Solano County Coroner (depending on the county of the find) of the find before additional disturbance occurs. Consistent with California Health and Safety Code § 7050.5(b), which prohibits disturbance of human remains uncovered by excavation until the Coroner has made a finding relative to PRC 5097 procedures, the campus will ensure that the remains and vicinity of the find are protected against further disturbance. If it is determined that the find is of Native American origin, the campus will comply with the provisions of PRC § 5097.98 regarding identification and involvement of the Native American Most Likely Descendant (MLD).

4.5-4(d) If human remains cannot be left in place, the campus shall ensure that the qualified archaeologist and the MLD are provided opportunity to confer on archaeological treatment of human remains, and that appropriate studies, as identified through this consultation, are carried out prior to reinterment. The campus shall provide results of all such studies to the local Native American community, and shall provide an opportunity of local Native American involvement in any interpretative reporting. As stipulated by the provisions of the California Native American Graves Protection and Repatriation Act, the campus shall ensure that human remains and associated artifacts recovered from campus projects on state lands are repatriated to the appropriate local tribal group if requested.
2003 LRDP EIR Mitigation Measures
CULTURAL RESOURCES

4.5-5 Implement LRDP Mitigations 4.5-1 through 4.5-4.

7.5.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>CULTURAL RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) The project sites contain no potentially historical resources. No impact would occur.

b) Previous site surveys within the CNPRC have indicated that the area has a low potential for containing subsurface cultural materials (Pacific Legacy 1999). Due to the extensive utility trenching for the proposed project and the excavation for building foundations, LRDP Mitigation 4.5-1(b) will be implemented and the campus will conduct on-site construction monitoring for the proposed project.

The 2003 LRDP EIR identified that development under the 2003 LRDP would contribute to the cumulative damage to and loss of archaeological resources in Yolo and Solano counties (LRDP Impact 4.5-5). Because any disturbance of native soils involves the potential to result in impacts to archaeological resources, the proposed project could contribute to this impact. LRDP Mitigation Measure 4.5-5, which is relevant to the proposed project, requires the campus to implement the measures discussed above to survey and protect cultural resources. However, the University cannot ensure that other regional jurisdictions would act to protect cultural resources. In addition, it is possible that significant archaeological resources on campus and/or the region could not be protected. Because this impact cannot be fully mitigated, this cumulative impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

c) During the course of development at UC Davis, extensive excavation for buildings and infrastructure, and extensive agricultural operations have not revealed the presence of unique paleontological or geological resources. It appears that the campus lacks unique paleontological and geological resources due to the deep alluvial deposition of fairly uniform soil types in the area. No impact would occur, and no additional analysis is required.
d) The 2003 LRDP EIR found the potential for development under the 2003 LRDP to disturb human remains, including those interred outside of formal cemeteries (LRDP Impact 4.5-4). LRDP Mitigation 4.5-4(a-d), included in the proposed project, would ensure that human remains in archaeological and isolated contexts would be protected from destruction that might take place from development through measures including identification, Native American consultation, preservation in place or recovery, respectful treatment and study, and reinterment. Therefore, this impact would be less than significant.

Summary

Mitigation measures 4.5-1(a,b), 4.5-3, 4.5-4(a,c,d), 4.5-5 from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of impacts on cultural resources to the extent feasible. The proposed project would not exceed the levels of significance of cultural resource impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant cultural resource impacts that were not previously addressed.
7.6 Geology, Soils, & Seismicity

7.6.1 Background

Section 4.6 of the 2003 LRDP EIR addresses the geology, soils, and seismicity effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.6 of the 2003 LRDP EIR.

Campus

The campus is located within the Putah Creek Plain of California’s Great Valley geomorphic province. Except for the somewhat raised elevation along the levee adjacent to Putah Creek, the campus is topographically flat. Soils on campus generally contain a high amount of silt and clay, and as a result, are moderately to slowly permeable and have slow runoff rates, minimal erosion hazards, and moderate to high shrink-swell potential. The predominant soil constraint to construction on campus is soil shrink-swell potential (the potential for soil volume to change with a loss or gain in moisture).

A series of low foothills, including the Dunnigan Hills, the Capay Hills, and the English Hills, lie approximately 20 miles west of the campus at the eastern base of the Coast Range. The presence of subsurface thrust faults within these regional foothills and within 100 miles of the campus indicates the potential for seismic ground shaking in the Davis region. The Davis region is not located within an Alquist-Priolo Fault Zone as defined in the Alquist-Priolo Earthquake Fault Zoning Act, which is designed to prohibit the construction of structures for human occupancy across active faults. According to the California Geological Survey’s Probabilistic Seismic Hazard Assessment for the State of California, the peak ground acceleration with a 10 percent probability of being exceeded in 50 years is 0.2 to 0.3g on the central campus, increasing to 0.3 to 0.4g on the western portion of Russell Ranch (CDOC 1996). By comparison, in most parts of the San Francisco Bay Area, the peak ground acceleration is 0.5g or greater. Likely effects of ground shaking during a probable maximum intensity earthquake for the area could include structural damage to stucco, masonry walls, and chimneys, which could expose people to risks associated with falling objects and potential building collapse.

Project Site

The engineering and design process for the project will incorporate the findings from the geotechnical survey to ensure adequate design for compliance with the California Building Code. No unusual site conditions are expected and the proposed improvements will utilize conventional foundation and substrate design to achieve an acceptable structural design.

7.6.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers an impact related to geology, soils, and seismicity significant if growth under the 2003 LRDP would:

- Expose people or structures to potential substantial adverse effects involving strong seismic ground shaking.
- Expose people or structures to potential substantial adverse effects involving seismic-related ground failure.
- Result in substantial soil erosion or the loss of topsoil. (Impacts associated with this standard are addressed in Section 7.8 Hydrology & Water Quality.)
• Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse.

• Be located on expansive soil, creating substantial risks to life or property.

• Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater.

Additional standards from the CEQA Guidelines' Environmental Checklist (“a,i” and “a,iv” in the checklist below) were found not applicable to campus growth under the 2003 LRDP.

7.6.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 related to geology, soils, and seismicity are evaluated in Section 4.6 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. No significant impacts identified in the 2003 LRDP EIR related to geology, soils, or seismicity are relevant to the proposed project.

7.6.4 Environmental Checklist and Discussion

The following section addresses the effects of the proposed project on geology, soils, and seismicity.

<table>
<thead>
<tr>
<th>GEOLOGY, SOILS, & SEISMICITY</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>ii) Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>iv) Landslides?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or offsite landslide, lateral spreading, subsidence, liquefaction or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>
e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

a,i) The UC Davis campus and the surrounding area are not located within an Alquist-Priolo Earthquake Fault Zone, and the closest known active fault rupture zones are over 30 miles away. Therefore, no impact would occur and no further analysis is required.

a,ii) The campus is located in a seismically active area that could experience ground shaking, liquefaction, and settlement. The peak ground acceleration for the main campus is estimated to be 0.2 to 0.3g, and 0.3 to 0.4g on the western portion of Russell Ranch. This intensity of seismic ground shaking has the potential to dislodge objects from shelves and to damage or destroy buildings and other structures. In the case of such a seismic event, people on campus and in the area would be exposed to these hazards.

The campus minimizes hazards associated with damage or destruction to buildings and other structures by reviewing and approving all draft building plans for compliance with the California Building Code (CBC), which includes specific structural seismic safety provisions. The campus also adheres to the University of California Seismic Safety Policy, which requires anchorage for seismic resistance of nonstructural building elements such as furnishings, fixtures, material storage facilities, and utilities that could create a hazard if dislodged during an earthquake. Campus EH&S provides guidance for preparing department-level Illness and Injury Prevention Plans that emphasize methods for minimizing seismic hazards in laboratories, for example, by properly securing chemical containers and gas cylinders. Each campus department has a Safety Coordinator who develops and maintains a departmental emergency response plan. The departmental emergency response plans must be submitted to the Emergency Preparedness Policy Group for annual review to assure consistency with the campus Emergency Operations Plan, which includes seismic safety and building evacuation procedures. The emergency procedures incorporated into the departmental emergency response plans further reduce the hazards from seismic shaking by preparing faculty, staff, and students for emergencies. Therefore, the project-level impact associated with risks due to seismic ground shaking would be less than significant. In addition, it is reasonable to assume that all regional jurisdictions would enforce the seismic provisions of the CBC, and therefore the cumulative impact is also considered less than significant.

a,iii) The potential for liquefaction on the campus is generally low because the depth to groundwater is relatively large (30 to 80 feet, depending on the season). Furthermore, as discussed above for (a,ii), campus policy requires compliance with the CBC and the University of California Seismic Safety Policy, which include structural and nonstructural seismic safety provisions. Complying with the provisions of the CBC requires that a geotechnical investigation be performed to provide data for the architect and/or engineer to responsibly design the project. Geotechnical investigations address the potential for liquefaction, lateral spreading, and other types of ground failure. No unusual site conditions are expected and the proposed improvements will utilize conventional foundation and substrate design to achieve and acceptable structural design. Therefore, because, in compliance with campus procedure, the project will comply with the CBC and the University of California Seismic Safety Policy, impacts associated with seismic-related ground failure would be less than significant.

The Davis area subsided by approximately 2 inches between 1999 and 2002. Because the subsidence is regional, unlike local differential settlement, it would not affect building foundations. Subsidence can adversely affect utilities such as storm drains which rely on gradient for gravity-driven flow if the differential subsidence across the length of the pipeline causes the
gradient of the pipelines to change direction. On the campus, the differential subsidence is about 0.4 inch per mile. Thus, over a period of 10 years, the gradient of a pipeline could change by as much as 4 inches per mile. Gravity-driven pipelines typically used for wastewater and storm water are designed with gradients between 0.5 and 1 percent (27 to 53 feet drop per mile). Given these gradients, the small potential change of about 4 inches per mile over a period of 10 years would not affect the functioning of existing and proposed storm drains or other utilities.

a,iv) The UC Davis campus and the surrounding area are characterized by flat topography and therefore would not be subject to landslides. Therefore, no impact would occur and no further analysis is required.

b) The soil types that occur on the UC Davis campus generally, including the project site, contain a high amount of silt and clay, and these soil types have minimal erosion hazard associated with them (see pages 4.6-1,2 and Figure 4.6-1 of the 2003 LRDP EIR). Therefore, this impact is considered to be less than significant. This issue of soil erosion was found to be less-than-significant in the 2003 LRDP EIR. The relationship between receiving water quality and potential soil erosion as a result of construction activities is addressed in items (a) and (c) in Section 7.8 Hydrology & Water Quality.

c) See the discussion in item (a,iii) above.

d) The soils in several areas of the campus have high shrink/swell potential and could, on a site-specific basis, have the potential to create risk to life or property. Campus policy requires compliance with the CBC, which includes provisions for construction on expansive soils such as proper fill selection, moisture control, and compaction during construction. Complying with the provisions of the CBC requires that a geotechnical investigation be performed to provide data for the architect and/or engineer to responsibly design the project. The project will comply with the CBC, which will ensure that this impact is less than significant.

e) The 2003 LRDP EIR identifies that an impact would result if soils are incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems. No septic tanks or alternative wastewater disposal systems are included in the proposed project, and there would be no impact.

Summary

No LRDP EIR mitigation measures are relevant to the proposed project for geology, soils, and seismicity impacts. The proposed project would not exceed the levels of significance of geology, soils, and seismicity impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant impacts that were not previously addressed.
7.7 HAZARDS & HAZARDOUS MATERIALS

7.7.1 Background

Section 4.7 of the 2003 LRDP EIR addresses the hazards and hazardous materials effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.7 of the 2003 LRDP EIR.

Campus

A variety of hazardous materials are used on campus during the course of daily operations. Hazardous chemicals used on campus include: chemical solvents, reagents, and aromatic hydrocarbons that are used in campus laboratories; pesticides, fungicides, and herbicides used by agricultural programs and in landscape maintenance; relatively small amounts of solvents, paints, and acids used by fine arts programs; gasoline and diesel fuels, oils and lubricants, antifreeze, cleaning solvents and corrosives, paints and paint thinners, and freon refrigerants used in vehicle and building maintenance. In addition, radioactive materials, biohazardous materials, and laboratory animals are used in teaching and research activities. The use of hazardous materials on campus generates hazardous byproducts that must eventually be handled and disposed of as hazardous wastes.

Generation, transportation, and disposal of hazardous wastes are regulated by various agencies. The lead federal regulatory agency is the Environmental Protection Agency. The State Department of Toxic Substances Control (DTSC) has primary state regulatory responsibility but can delegate enforcement authority to local jurisdictions that enter into agreements with the state agency, as it did with Yolo County Department of Environmental Health (YCDEH) under the Certified Unified Program Agency (CUPA) program.

The campus’ Office of Environmental Health and Safety (EH&S) coordinates most local, state, and federal regulatory compliance functions related to the campus’ health, safety, and environmental issues. EH&S performs safety education and training, regulatory interpretation and applicability, approval of potentially hazardous procedures, resolution of safety problems, surveillance, and monitoring. In addition, EH&S provides guidance for several campus safety programs, including: the Chemical Inventory System, which tracks inventory and use of hazardous materials on campus; the CUPA Self-Audit Program, which complies with the terms of an agreement with the YCDEH; development of laboratory-specific Chemical Hygiene Plans; the Radiation and X-Ray Safety Programs; and the Biological Safety Administrative Advisory Committee. EH&S is also a working partner in such campus administrative advisory groups as the Chemical Safety Committee, the Radiation Safety Committees, the Animal Use and Care Committee, and the Biological Safety Administrative Advisory Committee. External administrative and benchmarking reviews of the EH&S programs are conducted periodically to identify means of further improving the programs. Benchmarking performed by the Campus Safety, Health, and Environmental Management Association (CSHEMA) in 2000 honored the UC Davis EH&S with a “Unique or Innovative Program Award” for its daily on-call program.

Project Site

The project site is located in the northeast corner of the CNPRC complex on the western edge of the UC Davis campus. The CNPRC operations area encompasses a total of approximately 120 acres. This area includes both developed and undeveloped land. The existing land use at the site includes buildings and cages used for laboratory research, housing, and breeding of nonhuman primates, and research fields. The operation of these facilities involve the use of a range of hazardous materials and
result in the generation of hazardous waste, as described more generally above for the campus as a whole.

Campus policy requires that due diligence surveys be performed for all proposed project sites as part of the project planning process. Any existing contamination issues on or adjacent to the project site that are identified in this survey will be reported on in the project’s Focused Tiered EIR.

7.7.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a hazards and hazardous materials impact significant if growth under the 2003 LRDP would:

- Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials.
- Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.
- Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within ¼ mile of an existing or proposed school.
- Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, create a significant hazard to the public or the environment.
- For a project within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, result in a safety hazard for people residing or working in the project area.
- Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan.

Additional standards from the CEQA Guidelines’ Environmental Checklist (“f” and “h” in the checklist below) were found not applicable to campus growth under the 2003 LRDP.

7.7.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 related to hazards and hazardous materials are evaluated in Section 4.7 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of proposed growth and development previously analyzed in the 2003 LRDP EIR. Potentially significant hazards and hazardous materials impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. In addition, LRDP Impacts 4.7-1, 4.7-2, 4.7-3, 4.7-4, 4.7-5, 4.7-6, 4.7-8, 4.7-9, and 4.7-12, presented below, are considered less than significant prior to mitigation, but the 2003 LRDP EIR identified mitigation to further reduce the significance of these impacts. Less than significant impacts without mitigation measures are not presented here. The project’s Focused Tiered EIR will evaluate the project’s relationship to these impacts in further detail, as warranted. See further discussion below.
<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARDS & HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7-1 Implementation of the 2003 LRDP would increase routine hazardous chemical use on campus by UC Davis laboratories and departments and in maintenance and support operations, which would not create significant hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-2 Implementation of the 2003 LRDP could increase routine generation of hazardous wastes on campus by UC Davis laboratories and departments and from maintenance and support operations, which would not create significant hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-3 Implementation of the 2003 LRDP could increase routine use of radioactive materials on campus at UC Davis laboratories, which would not create significant hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-4 Implementation of the 2003 LRDP could increase routine generation of radioactive wastes on campus by UC Davis laboratories, which would not create significant hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-5 Implementation of the 2003 LRDP could increase routine use of biohazardous materials on campus by UC Davis laboratories, which would not create significant hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-6 Implementation of the 2003 LRDP could increase routine generation of biohazardous wastes on campus by UC Davis laboratories, which would not create significant hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-8 Implementation of the 2003 LRDP would increase the routine transport of hazardous materials to and from campus, which would not significantly increase hazards to the public or the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-9 Implementation of the 2003 LRDP would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-12 Construction activities on campus under the 2003 LRDP would not expose construction workers and campus occupants to contaminated soil or groundwater.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.7-17 Campus development under the 2003 LRDP could physically interfere with the campus’ Emergency Operations Plan.</td>
<td>PS</td>
<td>LS</td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures		
HAZARDS & HAZARDOUS MATERIALS		
4.7-1 The campus shall continue to implement the same (or equivalent) safety plans, programs, practices, and procedures related to the use, storage, and disposal of hazardous chemical materials during the 2003 LRDP planning horizon, including, but not necessarily limited to, the Business Plan, Hazardous Materials Communication Program, Chemical Inventory System, CUPA Self-Audit program, Injury and Illness Prevention Program, Chemical Hygiene Plans, Medical Surveillance Program, Chemical Safety Advisory Committee, Chemical Carcinogen Safety Program, and EH&S audits and safety training. These programs may		
2003 LRDP EIR Mitigation Measures
HAZARDS & HAZARDOUS MATERIALS

be replaced by other programs that incorporate similar health and safety measures.

4.7-2(a) Implement LRDP Mitigation 4.7-1.

4.7-2(b) The campus shall continue to implement the same (or equivalent) hazardous waste management programs during the 2003 LRDP planning horizon, including, but not necessarily limited to, hazardous waste storage and handling procedures, the waste minimization program, the pretreatment program, and the Waste Exclusion Program. These programs may be subject to modification as more stringent standards are developed or if the programs become obsolete through replacement by other programs that incorporate similar health and safety protection measures.

4.7-3(a) Implement LRDP Mitigation 4.7-1.

4.7-3(b) The campus shall continue to implement the same (or equivalent) Health Physics Program during the 2003 LRDP planning horizon. This program may be subject to modification as more stringent standards are developed or if the program becomes obsolete through replacement by other programs that incorporate similar health and safety protection measures.

4.7-4(a) Implement LRDP Mitigation 4.7-1.

4.7-4(b) Implement LRDP Mitigation 4.7-3 (b).

4.7-4(c) The campus shall continue to implement measures to reduce the generation of radioactive waste, including the requirement that employees working with radioactive materials be trained in radioactive waste minimization, EH&S online information about radioactive waste minimization, and exploration of waste minimization techniques by EH&S staff.

4.7-5(a) Implement LRDP Mitigation 4.7-1.

4.7-5(b) The campus shall continue to implement the same (or equivalent) Biosafety Program during the 2003 LRDP planning horizon. This program may be subject to modification as more stringent standards are developed or if the program becomes obsolete through replacement by other programs that incorporate similar health and safety protection measures.

4.7-6(a) Implement LRDP Mitigation 4.7-1.

4.7-6(b) Implement LRDP Mitigation 4.7-5(b).

4.7-8 The campus shall continue to require that packaging of chemicals to be transported on public roads conform with all legal requirements.

4.7-9 Implement LRDP Mitigations 4.7-1 through 4.7-8.

4.7-12 The campus shall perform due diligence assessments of all sites where ground-disturbing construction is proposed.

4.7-17 To the extent feasible, the campus shall maintain at least one unobstructed lane in both directions on campus roadways. At any time only a single lane is available due to construction-related road closures, the campus shall provide a temporary traffic signal, signal carriers (i.e., flagpersons), or other appropriate traffic controls to allow travel in both directions. If construction activities require the complete closure of a roadway, the campus shall provide appropriate signage indicating alternative routes. To ensure adequate access for emergency vehicles when construction projects would result in temporary lane or roadway closures, the campus shall inform emergency services, including the UC Davis Police and Fire Departments, and American Medical Response, of the closures and alternative travel routes.

7.7.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>HAZARDS & HAZARDOUS MATERIALS</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? ☑ ☐ ☐ ☐ ☐ ☐
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? ☑ ☐ ☐ ☐ ☐ ☐
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? ☑ ☐ ☐ ☐ ☐ ☐
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? ☐ ☐ ☐ ☐ ☐ ☑
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area? ☑ ☐ ☐ ☐ ☐ ☐
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? ☑ ☐ ☐ ☐ ☐ ☐
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? ☑ ☐ ☐ ☐ ☐ ☐
h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? ☑ ☐ ☐ ☐ ☐ ☐

a) The proposed project would result in the use of a range of substances and chemicals considered to be hazardous. The project will also involve the use of laboratory animals. The project’s Focused Tiered EIR will fully evaluate the project’s impacts related to the above topics in relationship to the analysis provided in the 2003 LRDP EIR, as further described below.

Hazardous Chemicals

The proposed project would involve the use of hazardous materials and generation of hazardous wastes related to: construction activities, building operations (e.g., laboratory functions), and building and landscape maintenance activities.

The 2003 LRDP EIR found that implementation of the 2003 LRDP would increase routine hazardous chemical use (Impact 4.7-1), routine generation of hazardous chemical wastes (Impact 4.7-2), and routine hazardous materials transport to and from the campus (Impact 4.7-8) by UC Davis laboratories, departments, and maintenance/support operations, which would not create significant hazards to the public or the environment. The campus achieves a high level of compliance with regulatory standards and campus policies relevant to use, transport, and disposal of hazardous materials, as discussed further in the ‘Setting’ subsection to Section 4.7 of the 2003 LRDP EIR. Hazardous waste treatment, storage, and disposal facilities currently have available capacity to accept and safely manage UC Davis chemical waste. The campus will continue to implement relevant safety programs and meet relevant standards regarding hazardous materials.
use, transport, and waste management for the proposed project, as well as for other projects proposed under the 2003 LRDP. Therefore, these project-level impacts would be less than significant. To ensure that safety policies continue to be implemented and to further reduce the significance of these impacts, LRDP Mitigations 4.7-1, 4.7-2(a-b), and 4.7-8 are included as part of the proposed project.

Given the campus' and local jurisdiction's existing policies and compliance with state and federal regulations, the 2003 LRDP EIR found that cumulative impacts related to the use and transport of hazardous materials and the generation of hazardous waste are less than significant.

Although impacts due to the increased use and generation of hazardous chemicals have been sufficiently analyzed in the 2003 LRDP EIR, project-specific and cumulative impacts will be further evaluated in the project's Focused Tiered EIR to confirm this finding.

Radioactive Materials
The proposed project would not increase the use of radioactive materials.

Biohazardous Materials
The proposed project would result in the use of biohazardous materials and the generation of biohazardous waste related to the increased virology and immunology research and laboratory space. Biosafety Level (BSL) 2 and 3 laboratory suites would be provided in project buildings to meet containment and operational requirements for research involving potentially infectious agents, as described in Section 3 (Project Description), of this Initial Study.

The 2003 LRDP EIR found that implementation of the 2003 LRDP would increase routine use of biohazardous materials (LRDP Impact 4.7-5) and routine generation of biohazardous waste (LRDP Impact 4.7-6) by UC Davis laboratories, departments, and maintenance/support operations, which would not create significant hazards to the public or the environment. The campus achieves a high level of compliance with regulatory standards and campus policies relevant to use, transport, and disposal of biohazardous materials, as discussed further in the 'Setting' subsection to Section 4.7 of the 2003 LRDP EIR. The potential impacts of increasing the use of biohazardous materials at UC Davis on employee health, the public, and the environment is considered less than significant because regulatory requirements and the current campus guidelines and practices for controlling employee exposures to infectious agents would be followed, which would also minimize impacts outside of the research laboratories. LRDP Mitigations 4.7-5 (a) and (b) and 4.7-6 (a) and (b) are relevant to the proposed project and would ensure that safety policies continue to be implemented to further reduce the significance of these impacts.

Given the campus' and local jurisdiction's existing policies and compliance with state and federal regulations, the 2003 LRDP EIR finds that cumulative impacts related to the use and transport of biohazardous materials and the generation of biohazardous waste are less than significant.

Although impacts due to the increased use biohazardous materials and generation of biohazardous wastes have been sufficiently analyzed in the 2003 LRDP EIR, project-specific and cumulative impacts will be further evaluated in the project's Focused Tiered EIR to confirm this finding.

Laboratory Animals
The proposed project would not increase the use of laboratory animals.

Non-UC Davis Entities
The project would not result in non-UC Davis entities working in proposed project buildings.
b) The 2003 LRDP EIR found that implementation of the 2003 LRDP would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment (Impact 4.7-9). Compliance with all applicable federal and state laws, as well as campus programs, practices, and procedures related to the transportation, storage, and use of hazardous materials would continue for the proposed project as well as other projects proposed under the 2003 LRDP, minimizing the potential for an accidental release of hazardous materials and providing for prompt and effective cleanup if an accidental release occurs. Therefore, this impact is considered less than significant. To ensure continued compliance with relevant laws and campus policies and to further reduce this less-than-significant impact, the LRDP Mitigation 4.7-9 is included as part of the project.

Although impacts due to the upset and accident conditions involving the release of hazardous materials into the environment have been sufficiently analyzed in the 2003 LRDP EIR, project-specific and cumulative impacts will be further evaluated in the project's Focused Tiered EIR to confirm this finding.

c) As indicated above, the proposed project would result in the use of a range of substances and chemicals considered to be hazardous. Existing schools within ¼ mile of campus include Martin Luther King High School on B Street in downtown Davis; Emerson Junior High School on Calaveras Avenue; Rivendell Nursery School; Parkside Children’s House (formerly Davis Montessori School); Redbud Montessori School north of the west campus; the Grace Valley Christian Academy on County Road 98; and the Fairfield Elementary School on Russell Boulevard at County Road 96. The only school within ¼ of the project site is the Grace Valley Christian Academy on County Road 98. There are no proposed new Davis Joint Unified School District (DJUSD) school sites within ¼ mile of the campus. The future west campus neighborhood is planned to include DJUSD elementary and high school facilities on the campus. Childcare centers are currently located on the campus.

Although hazardous materials associated with the proposed project could be handled within ¼ mile of existing and proposed schools and childcare centers, these materials would not likely be handled in quantities sufficient to pose a risk to occupants of the schools or to members of the campus and surrounding community. The potential consequences of an accidental release would likely be limited to the individual laboratory where the spill occurred, and people outside the buildings would not be exposed. The project’s Focused Tiered EIR will fully evaluate the potential consequences of an accidental release given the proposed laboratory design and containment features, applicable regulations, and the UC Davis Biosafety Program.

d) The Laboratory for Energy Related Research/South Campus Disposal site is the only campus site that was listed as a hazardous materials site pursuant to Government Code Section 65962.5. The proposed project would not disturb this site.

In addition, the 2003 LRDP EIR found that construction activities under the 2003 LRDP would not expose construction workers and campus occupants to contaminated soil or groundwater (Impact 4.7-12). Additionally, as the proposed project would not require the demolition or renovation of existing buildings it would not expose construction workers or campus occupants to contaminated building materials (Impact 4.7-13). Campus policy requires that due diligence surveys be performed for all proposed project sites as part of the project planning process. The results of this survey will be reported on in the project’s Focused Tiered EIR. Federal and state regulations require that workers who may be exposed to contaminants during the course of their jobs know of the presence of contamination and be properly trained. In addition, these regulations require that appropriate engineering and administrative controls and protective equipment be provided to reduce exposure to safe levels. Current campus due diligence policy and Cal/OSHA regulations minimize the exposure of construction workers to contaminants. In
addition, if contaminants are identified on project sites, the campus would coordinate site remediation. The need for remediation will be identified in the project's Focused Tiered EIR. To ensure that due diligence surveys are performed and to further reduce this less-than-significant impact, LRDP Mitigation 4.7-12 will be implemented as part of the proposed project.

e) The proposed project site is located about 4,000 feet west of the University airport. The 2003 LRDP EIR found that development of certain projects on the west campus under the 2003 LRDP could result in safety hazards associated with aircraft. However, the proposed project is not one of these projects and would not conflict with airport operations. Therefore, the impact would be less than significant.

f) The University Airport is a public use airport, not a private airstrip. No other airport facilities are within the immediate vicinity of the campus. No impact would occur. Refer to item e) above for a discussion of potential safety hazards associated with the University airport, a local public use airport.

g) The 2003 LRDP EIR found that implementation of the 2003 LRDP could interfere with the campus’ Emergency Operations Plan through construction-related road closures (Impact 4.7-17). Construction of the proposed project could require road closures. Under current campus procedures, if there are changes in traffic patterns resulting from construction lane or roadway closures, the UC Davis Office of Architects and Engineers initiates notification of emergency services, including the UC Davis Fire Department and Police Department, and American Medical Response, which provides regional ambulance services to the campus. No road closures are expected for the proposed project. However, to ensure that the proposed project would not impair implementation of or physically interfere with emergency response and evacuation efforts, LRDP Mitigation 4.7-17, which requires the campus to keep at least one lane open in both directions to the extent feasible, will be included as part of the proposed project. No other potential impacts associated with interference of an adopted emergency response plan or emergency evacuation plan would occur.

h) Areas along Putah Creek are the only areas on campus that could be susceptible to wildland fires. Urbanization will not occur in close proximity to these areas under the 2003 LRDP because land along Putah Creek is designated for Open Space and Teaching and Research Fields, and land adjacent to these open areas is designated primarily for Teaching and Research Fields and low density development. The proposed project site is located about 4,000 feet north of Putah Creek. Therefore, no impact would occur.

Summary

Mitigation measures 4.7-1, 4.7-2 (a & b), 4.7-3 (a & b), 4.7-4 (a-c), 4.7-5 (a & b), 4.7-6 (a & b), 4.7-8, 4.7-9, 4.7-12, and 4.7-17 from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of hazards and hazardous materials impacts to the extent feasible. The proposed project would not likely exceed the levels of significance of hazards and hazardous materials impacts previously addressed in the 2003 LRDP EIR, nor would it likely introduce any new significant hazards and hazardous materials impacts that were not previously addressed. However, potential impacts related to the various types of hazardous substances and waste that would be used by the proposed project will be analyzed further in the Focused Tiered EIR, to confirm this finding.
7.8 Hydrology & Water Quality

7.8.1 Background

Section 4.8 of the 2003 LRDP EIR addresses the hydrology and water quality effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the 'Setting' subsection of Section 4.8 of the 2003 LRDP EIR.

Campus

Surface Water Resources

The UC Davis campus is located in the Lower Sacramento watershed. Putah Creek, the principal waterway in the Davis area, originates from springs in the Mayacmas Mountains northwest of the campus, flows into Lake Berryessa, through Winters, along the southern boundary of Russell Ranch, along the southern boundary of UC Davis' west and south campuses, and eventually into the Yolo Bypass, an overflow channel for the Sacramento River. The North Fork Cutoff and the Arboretum Waterway on campus follow the historic channel of Putah Creek, but currently have no natural flow. The North Fork Cutoff is a typically dry stream channel on the west campus that is currently occupied by sheep and cattle programs in the Department of Animal Science. The Arboretum Waterway serves as the storm water detention basin for the central campus.

UC Davis is a member of the Solano Project, and currently has rights to purchase 4,000 acre-feet of Putah Creek water from Lake Berryessa per year, although reductions in deliveries can occur during drought conditions. The water is delivered to the southwest corner of the campus via an underground pipeline. UC Davis also has rights to surface water from Putah and Cache Creeks. The campus has not used this water in the recent past, but the tenant farmer at Russell Ranch uses approximately 3,750 acre-feet of water per year from Putah and Cache Creeks (via Willow Canal) for irrigation of commercial crops.

The quantity and quality of flows in Putah Creek are highly variable and depend on releases from Lake Berryessa, precipitation, storm water runoff, and treated effluent discharge. The campus' tertiary level Wastewater Treatment Plant (WWTP) is the only major discharger of treated effluent to Putah Creek. The plant is regulated under a National Pollutant Discharge Elimination System (NPDES) Waste Discharge Requirement (WDR) permit issued by the Central Valley Regional Water Quality Control Board (CVRWQCB).

Groundwater Resources

The campus is underlain by sand and gravel alluvial deposits that include deep and shallow/intermediate depth aquifers. Deep gravel and sand aquifers underlie the campus between 600 to 1,500 feet below ground surface and supply the campus domestic/fire system. Historic annual domestic water use on campus over the past three decades has ranged from less than 600 million gallons per year (mgy) during drought conditions to nearly 900 mgy (UC Davis 1997). Despite the campus' significant growth in recent decades, the campus' deep aquifer demands have not significantly increased since the late 1960s, a trend that reflects the success of the campus' water conservation efforts.

Shallow/intermediate depth sand and gravel aquifers underlie the campus at depths from 150 to 800 feet below ground surface and supply the campus utility water system, main campus agricultural water needs, and campus and tenant farmer irrigation needs at Russell Ranch. Over the past ten years, an average of approximately 2,657 acre-feet per year of shallow/intermediate aquifer water was used.
for agricultural purposes on campus, including approximately 1,813 acre-feet on the main campus and approximately 844 acre-feet at Russell Ranch (UC Davis Agricultural Services 2003, UC Davis ORMP 2003c). Water levels in the shallow/intermediate aquifer vary seasonally and strongly correlate to precipitation. A generally upward recharge trend over the period from 1957 to 2002 indicates that there has not been long-term overdraft of the shallow/intermediate depth aquifers.

Regional groundwater quality is generally characterized as having high mineral content. Calcium, magnesium, and sulfates have been identified as the dominant problematic constituents.

Flooding & Drainage

On campus, the South Fork of Putah Creek, the North Fork Cutoff, and the Arboretum Waterway channels are designated as FEMA 100-year floodplain areas. In addition, a portion of Russell Ranch along County Road 31 and a portion of the west campus along County Road 98 are also subject to flooding during a 100-year storm event.

The central campus drainage system intercepts and collects runoff and transports this water to the Arboretum Waterway. During large storm events, water rises in the Arboretum Waterway, overtops the weir at the west end of the waterway, and flows into the pump pond located north of the weir. From the pump pond, water is pumped through an underground storm drain to the South Fork of Putah Creek. The peak discharge from the Arboretum Waterway to Putah Creek measured since December 1999 was 65 cubic feet per second (cfs). The majority of land in the west and south campuses and at Russell Ranch is used as teaching and research fields and is not drained by a storm drainage system. Irrigation practices on campus teaching and research fields typically do not generate surface runoff. However, large storm events may result in shallow overland flows. In addition, developed areas on the west and south campuses include storm water conveyance systems that drain to Putah Creek.

To protect the quality of storm water on campus that ultimately drains to Putah Creek, UC Davis construction and industrial activities are subject to the NPDES storm water requirements. Routine maintenance and minor construction activities on campus are subject to the campus' Phase II Storm Water Management Plan (SWMP).

Project Site

The CNPRC developed area is flat and during wet weather has historically experienced extensive ponding of slow-draining rainwater. The drainage system consists of shallow swales to convey water to stormwater ditches. The stormwater system was recently upgraded with revised grading and installation of a new stormwater detention basin and a new stormwater retention basin. These improvements have greatly increased the stormwater protection for the CNPRC. Stormwater now flows north into a recently constructed detention pond. From the detention pond, it flows into the regional stormwater drainage system.

7.8.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a hydrology and water quality impact significant if growth under the 2003 LRDP would:

- Violate any water quality standards or waste discharge requirements.
- Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level.
• Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on site or off site.

• Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on site or off site.

• Create or contribute runoff water that would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff.

• Otherwise substantially degrade water quality.

• Place within a 100-year flood hazard area structures that would impede or redirect flood flows.

• Expose people or structures to a significant risk of loss, injury, or death involving flooding.

Additional standards from the CEQA Guidelines’ Environmental Checklist (“g” and “j” in the checklist below) were found not applicable to campus growth under the 2003 LRDP.

7.8.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on hydrology and water quality are evaluated in Section 4.8 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant and potentially significant hydrology and water quality impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. In addition, Impact 4.8-1, presented below, is considered less than significant prior to mitigation, but mitigation measures were identified in the 2003 LRDP EIR to further reduce the significance of this impact. Other less than significant impacts that do not include mitigation measures are not presented here. Mitigation measures were identified in the 2003 LRDP EIR to reduce the magnitude of LRDP-level impact 4.8-5 and cumulative impact 4.8-13, but these impacts were identified as significant and unavoidable because they cannot be fully mitigated. Mitigation is also relevant to reduce the magnitude of cumulative impact 4.8-10, but this impact is identified as significant and unavoidable because mitigation falls within other jurisdictions to enforce and monitor and therefore cannot be guaranteed by the University of California.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROLOGY & WATER QUALITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8-1 Campus construction activities associated with implementation of the 2003 LRDP would not contribute substantial loads of sediment or other pollutants in storm water runoff that could degrade receiving water quality.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.8-2 Development under the 2003 LRDP would increase impervious surface on the campus and could alter drainage patterns, thereby increasing runoff and loads of pollutants in storm water, which could affect water quality.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>4.8-3 Implementation of the 2003 LRDP could alter drainage patterns in the project area and increase impervious surfaces, which could exceed the capacity of storm water drainage systems and result in localized flooding and contribution to offsite flooding.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>4.8-4 Campus growth under the 2003 LRDP would increase discharge of treated effluent from the campus wastewater treatment plant into the South Fork of</td>
<td>PS</td>
<td>LS</td>
</tr>
</tbody>
</table>
2003 LRDP EIR Impacts
HYDROLOGY & WATER QUALITY

<table>
<thead>
<tr>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putah Creek, which could exceed waste discharge requirements and degrade receiving water quality.</td>
<td></td>
</tr>
<tr>
<td>4.8-5 Campus growth under the 2003 LRDP would increase the amount of water extracted from the deep aquifer and would increase impervious surfaces. This could result in a net deficit in the deep aquifer volume or a lowering of the local groundwater table but would not interfere substantially with recharge of the deep aquifer.</td>
<td>S SU</td>
</tr>
<tr>
<td>4.8-9 Development under the 2003 LRDP could place non-residential structures within a 100-year floodplain, which could expose people and structures to risks associated with flooding and/or impede or redirect flows, contributing to flood hazards.</td>
<td>PS LS</td>
</tr>
<tr>
<td>4.8-10 Development under the 2003 LRDP, in conjunction with construction activities, increased impervious surfaces, and alterations to drainage patterns associated with other development in the region that would increase impervious surface coverage in the watershed, could increase storm water runoff, and could provide substantial sources of polluted runoff, which could affect receiving water quality.</td>
<td>S SU</td>
</tr>
<tr>
<td>4.8-11 Implementation of the 2003 LRDP in combination with regional development could alter drainage patterns and increase the rate or amount of surface runoff, which could exceed the capacity of storm water drainage systems and result in flooding within the Putah Creek watershed.</td>
<td>PS LS</td>
</tr>
<tr>
<td>4.8-12 Growth under the 2003 LRDP and other development in the region would increase discharge of treated effluent to the Putah Creek watershed, which could degrade receiving water quality.</td>
<td>PS LS</td>
</tr>
<tr>
<td>4.8-13 Growth under the 2003 LRDP and other development in the region would increase the amount of water extracted from the deep aquifer and increase impervious surfaces. This could result in a net deficit in the deep aquifer volume or a lowering of the local groundwater table but would not interfere substantially with recharge of the deep aquifer.</td>
<td>S SU</td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures
HYDROLOGY & WATER QUALITY

4.8-1 The campus shall continue to comply with the NPDES state-wide General Permit for Discharge of Storm Water Associated with Construction Activity by implementing control measures and BMPs required by project-specific SWPPPs and with the Phase II SWMP to eliminate or reduce non-storm and storm water discharges to receiving waters.

4.8-2 The campus shall comply with the measures in the Phase II SWMP to ensure that project design includes a combination of BMPs, or equally effective measures as they become available in the future, to minimize the contribution of pollutants to receiving waters.
4.8-3(a) Prior to approval of specific projects under the 2003 LRDP, the campus shall perform a drainage study to evaluate each specific development to determine whether project runoff would exceed the capacity of the existing storm drainage system, cause ponding to worsen, and/or increase the potential for property damage from flooding.

4.8-3(b) If it is determined that existing drainage capacity would be exceeded, ponding could worsen, and/or risk of property damage from flooding could increase, the campus shall design and implement necessary and feasible improvements. Such improvements could include, but would not be limited to, the following:

(i) The expansion or modification of the existing storm drainage system.
(ii) Single-project detention or retention basins incorporated into project design with features including but not limited to: small onsite detention or retention basins; rooftop ponding; temporary flooding of parking areas, streets and gutters; landscaping designed to temporarily retain water; and gravel beds designed to collect and retain runoff.
(iii) Multi-project storm water detention or retention basins.

4.8-3(c) Campus development west of County Road 98 shall incorporate single- or multi-project basins in order to reduce storm event drainage flows to the Covell Drain.

4.8-4(a) The campus shall continue to monitor and modify its pretreatment program, WWTP operation, and/or treatment processes as necessary to comply with WDRs.

4.8-4(b) The campus shall implement a monitoring program specifically targeted at the following constituents: copper, cyanide, iron and nitrate + nitrite, and make appropriate modifications as necessary to the campus pretreatment program to avoid exceedance of permit limits for these constituents.

4.8-5(a) The campus shall continue to implement water conservation strategies to reduce demand for water from the deep aquifer. Domestic water conservation strategies shall include the following or equivalent measures:

(i) Install water efficient shower heads and low-flow toilets that meet or exceed building code conservation requirements in all new campus buildings, and where feasible, retrofit existing buildings with these water efficient devices.
(ii) Continue the leak detection and repair program.
(iii) Continue converting existing single-pass cooling systems to cooling tower systems.
(iv) Use water-conservative landscaping on the west and south campuses where domestic water is used for irrigation.
(v) Replace domestic water irrigation systems on the west and south campuses with an alternate water source (shallow/intermediate or reclaimed water), where feasible.
(vi) Install water meters at the proposed neighborhood to encourage residential water conservation.
(vii) Identify and implement additional feasible water conservation strategies and programs including a water awareness program focused on water conservation.

4.8-5(b) The campus shall continue hydrogeologic monitoring and evaluation efforts to determine the long-term production and quality trends of the deep aquifer.

4.8-5(c) To the extent feasible, new water supply wells in the deep aquifer should be located on the west campus in sands and gravels that are not used by or available to the City of Davis for deep water extraction.

4.8-5(d) If continued hydrogeologic monitoring and evaluation efforts identify constraints in the deep aquifer’s ability to provide for the campus’ long-term water needs, the campus will treat shallow/intermediate aquifer and/or surface water from the Solano Project to serve domestic water demand.

4.8-9(a) Prior to final design, the campus will review the plans for all structures to be constructed in the 100-year floodplain for compliance with the following FEMA requirements for non-residential structures:

(i) Elevate the lowest floor (including the basement) to or above the base flood level; or
(ii) Together with attendant utility and sanitary facilities, design so that below the base flood level, the structure is watertight with walls substantially impermeable to the passage of water and with structural components having the capability of resisting hydrostatic and hydrodynamic loads and effects of buoyancy; and
HYDROLOGY & WATER QUALITY

(iii) Require that fully enclosed areas below the lowest floor that are subject to flooding be designed to automatically equalize hydrostatic flood forces on exterior walls by allowing for entry and exit of flood waters.

4.8-9(b) For structures placed within the 100-year floodplain, flood control devices will be designed to direct flows toward areas where flood hazards will be minimal.

4.8-10(a) Implement LRDP Mitigation 4.8-1 and 4.8-2.

4.8-10(b) Jurisdictions within the Putah Creek watershed should comply with Phase II NPDES Municipal Storm Water Permit requirements for small municipalities in order to minimize the contribution of sediment and other pollutants associated with development in the region.

4.8-10(c) Comprehensive SWPPPs and monitoring programs should be implemented by all storm water dischargers associated with specified industrial and construction activities, in compliance with the state’s General Permits. Such plans shall include BMPs or equally effective measures.

4.8-11 The campus shall implement LRDP Mitigation 4.8-3(a-c) in order to prevent flooding on campus.

4.8-12 The campus shall implement LRDP Mitigation 4.8-4(a) and (b) to minimize the potential for degradation of receiving water quality.

4.8-13(a) Implement LRDP Mitigation 4.8-5(a-d).

4.8-13(b) The City of Davis is expected to implement measures to reduce the amount of water withdrawn from the deep aquifer consistent with policies adopted in its General Plan.

- Give priority to demand reduction and conservation over additional water resource development (Policy WATER 1.1)
- Require water conserving landscaping (Policy WATER 1.2)
- Provide for the current and long-range water needs of the Davis Planning Area, and for protection of the quality and quantity of groundwater resources (Policy WATER 2.1)
- Manage groundwater resources so as to preserve both quantity and quality (Policy WATER 2.2)
- Research, monitor and participate in issues in Yolo County and the area of origin of the City’s groundwater that affect the quality and quantity of water (Policy WATER 4.1)

7.8.4 Environmental Checklist and Discussion

HYDROLOGY & WATER QUALITY

<table>
<thead>
<tr>
<th>Would the project…</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

☐ ☐ ☑ ☐ ☐ ☐

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

☐ ☐ ☑ ☐ ☐ ☐

e) Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff?

☐ ☐ ☑ ☐ ☐ ☐

f) Otherwise substantially degrade water quality?

☐ ☐ ☑ ☐ ☐ ☐

g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

☐ ☐ ☐ ☐ ☐ ☑

h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?

☐ ☐ ☑ ☐ ☐ ☐

i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

☐ ☐ ☑ ☐ ☐ ☐

j) Inundation by seiche, tsunami, or mudflow?

☐ ☐ ☑ ☐ ☐ ☐

a,f) Construction

The 2003 LRDP EIR found that construction on campus under the 2003 LRDP would not contribute substantial loads of sediment or other pollutants to storm water runoff and that the impact would be less-than-significant (Impact 4.8-1). Construction on campus is covered under the NPDES state-wide General Permit for Discharge of Storm Water Associated with Construction Activity. As part of this permit, campus construction projects managed by outside contractors and/or disturbing over one acre (including the proposed project) must implement Storm Water Pollution Prevention Plans (SWPPPs), which specify Best Management Practices (BMPs) to reduce the contribution of sediments, spilled and leaked liquids from construction equipment, and other construction-related pollutants to storm water runoff. All routine maintenance activities and any construction projects disturbing less than one acre that are not managed by outside contractors are covered under the campus’ Phase II Municipal Storm Water Management Plan, which requires BMPs to reduce contribution of pollutants to storm water runoff. Because the UC Davis campus is required to comply with the NPDES state-wide permit and Phase II requirements, the water quality effects associated with construction activities on campus are considered to be less than significant. In addition, LRDP Mitigation 4.8-1, included as part of the project, requires the campus to implement BMPs to reduce construction-related water quality impacts and would further reduce this less-than-significant impact.

Operation

The 2003 LRDP EIR found that campus growth under the 2003 LRDP would increase discharge of treated effluent from the campus WWTP into the South Fork of Putah Creek, which could exceed waste discharge requirements and degrade receiving water quality (Impact 4.8-4). The proposed
projects would utilize typical amounts of water and produce an associated amount of wastewater effluent for a laboratory use. With current and future discharge control programs and possible operational changes, the increased discharge from the WWTP associated with the proposed project as well as other projects under the 2003 LRDP is expected to comply with NPDES regulations, and therefore will not cause degradation of receiving water quality. The campus will continue to monitor effluent discharge in compliance with the applicable WDRs for the WWTP, and if effluent limits are exceeded, the campus will modify its pretreatment program and WWTP operation as appropriate. These practices are further confirmed in LRDP Mitigation 4.8-4(a), which is included as part of the project. In compliance with LRDP Mitigation 4.8-4(b), also relevant to part of the project, the campus will target monitoring and pretreatment for the contaminants specifically identified as of potential concern by the CVRWQCB. These measures would reduce the impact to a less-than-significant level.

The 2003 LRDP EIR found that growth under the 2003 LRDP and other development in the region would increase the cumulative discharge of treated effluent to the Putah Creek watershed, which could degrade receiving water quality (Impact 4.8-12). However, UC Davis is currently the only major discharger of treated effluent to Putah Creek, and no other major dischargers are expected in the future. LRDP Mitigation 4.8-12, included as part of the project, requires implementation of LRDP Mitigation 4.8-4(a-b), discussed above, which would reduce the impact of increased effluent discharge from the campus WWTP to Putah Creek to a less-than-significant level. Therefore, with implementation of LRDP Mitigation 4.8-12, which is included in the proposed project, the cumulative impact would be less than significant.

b) Deep Aquifer

The proposed project would utilize water from the campus domestic water system and the new domestic water mains proposed as part of the project would ensure that buildings within the CNPRC are served with an adequate water volume and water pressure to meet service needs and firefighting needs. The 2003 LRDP EIR found that campus growth under the 2003 LRDP would increase the amount of water extracted from the deep aquifer and would increase impervious surfaces, which could result in a net deficit in the deep aquifer volume or a lowering of the local groundwater table but would not interfere substantially with recharge of the deep aquifer (Impact 4.8-5). The deep aquifer is confined with limited lateral and vertical recharge and is overlain by thick clay layers that are relatively impermeable. Because of these characteristics, increased impervious surfaces associated with development under the 2003 LRDP will not significantly affect the recharge capacity of the deep aquifer. The 2001 demand for water from the deep aquifer was approximately 2,671 acre-feet. The annual demand for deep aquifer water under the 2003 LRDP, including demand associated with the proposed project, is expected to increase to approximately 5,301 acre-feet through 2015-16 (UC Davis ORMP 2003c). LRDP Mitigation 4.8-5(a-c), included as part of the project, would require continued water conservation efforts, efforts to determine the ability of the deep aquifer to provide for the campus’ long-term water needs, and efforts to minimize withdrawals by UC Davis and the City of Davis from the same deep aquifers. If monitoring identifies that the aquifer is unable to meet the campus’ long-term needs, consistent with LRDP Mitigation 4.8-5(d), the campus would treat intermediate aquifer water and/or surface water to serve domestic water needs. Regardless of these mitigation measures, if UC Davis’ future demand for water from the deep aquifer increases, groundwater levels in the deep aquifer could lower, contributing to a net deficit in the overall groundwater budget. The effects of increased demand on the volume of the deep aquifer are currently not well understood (although consistent with LRDP Mitigation 4.8-5(b), the campus will continue to study these effects). Therefore, this impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No
conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

The 2003 LRDP EIR found that growth under the 2003 LRDP and other development in the region would cumulatively increase the amount of water extracted from the deep aquifer and would increase impervious surfaces, which could result in a net deficit in the deep aquifer volume or a lowering of the local groundwater table, but would not interfere substantially with recharge of the deep aquifer (Impact 4.8-13). The long-term reliability of the deep aquifer could be at risk if both UC Davis and the City of Davis rely on the aquifer to meet their future needs. In compliance with LRDP Mitigation 4.8-13(a), included in the proposed project, the campus would: minimize withdrawals from those aquifers shared with the City of Davis by locating new wells on the west campus when feasible, monitor the deep aquifer, conserve water, and manage water supplies efficiently. LRDP Mitigation 4.8-13(b) recognizes the City of Davis General Plan’s objectives regarding reduction of water extraction from the deep aquifer. However, regardless of mitigation, because the effects of increased demand on the volume of the deep aquifer are currently not well understood, this impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

Shallow/Intermediate Aquifer

The project would not use water from the shallow/intermediate aquifer and would have no effect on water levels in the shallow/intermediate aquifer.

c) The proposed project would include approximately 14,000 square feet of new impervious surfaces. The new buildings would include changes to direct water to stormwater drainage swales which connect to the CNPRC stormwater drainage system. The 2003 LRDP EIR found that development under the 2003 LRDP would increase impervious surfaces on the campus and could alter drainage patterns, thereby increasing runoff and loads of pollutants in storm water, which could adversely affect surface water quality (Impact 4.8-2). Discharge of storm water to the Arboretum Waterway is covered under a NPDES Phase II permit for small municipal storm water systems, which requires BMPs to reduce pollutants in storm water discharge to the maximum extent practicable. LRDP Mitigation 4.8-2 requires the campus to comply with Phase II regulations. As described in item (a) above, both construction and operation activities are required to employ BMPs. With implementation of Phase II requirements, increases in storm water runoff and levels of contaminants in runoff associated with implementation of the 2003 LRDP, including the proposed project, would have a less than significant impact on receiving waters.

The 2003 LRDP EIR found that development under the 2003 LRDP, in conjunction with construction activities, increased impervious surfaces, and alterations to drainage patterns associated with other development in the watershed could increase storm water runoff and could provide substantial sources of polluted runoff, which could adversely affect receiving water quality (Impact 4.8-10). LRDP Mitigations 4.8-10 (a-c) require the campus and regional jurisdictions to comply with NPDES Phase II requirements and implement SWPPPs for specified industrial and construction activities. However, implementation of LRDP Mitigation 4.8-10(b) and (c) cannot be guaranteed by the University of California because it falls within other jurisdictions to enforce and monitor. Therefore, the impact is currently considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new
information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

d,e) The 2003 LRDP EIR found that implementation of the 2003 LRDP would alter drainage patterns in the project area and would increase impervious surfaces, which could exceed the capacity of storm water drainage systems and result in localized flooding and contribution to offsite flooding (Impact 4.8-3). Campus runoff is not expected to significantly increase peak flows in Putah Creek under the 2003 LRDP because anticipated development represents only a minor increase in the percentage of impervious area in the watersheds. Campus discharges from the Arboretum Waterway to Putah Creek are not expected to exceed the existing pumping capacity of approximately 80 cfs (the current NPDES permit has a maximum discharge limit of 130 cfs). The current campus standard for storm water management is a 10-year storm event, under the campus Stormwater Management Plan (Wengler 2005). However, under existing conditions, localized flooding on some portions of the campus occurs during a 2-year storm event. In most cases, this flooding consists of temporary water ponding at storm drain inlets and along roads that does not result in property damage or other serious consequences. Without any improvements, increased runoff associated with development under the 2003 LRDP, including the proposed project, would increase the likelihood of localized flooding (West Yost & Associates 2000). [In accordance with LRDP Mitigation 4.8-3(a), included in the project, a drainage study has been performed for the CNPRC and the project would be consistent with the master drainage plan at the CNPRC. Therefore, this impact would be less than significant.

The 2003 LRDP EIR also found that implementation of the 2003 LRDP in combination with regional development could alter drainage patterns and increase the rate or amount of surface runoff, which could cumulatively exceed the capacity of storm water drainage systems and result in flooding within the Putah Creek watershed (Impact 4.8-11). In most cases, this flooding consists of temporary water ponding at storm drain inlets and along roads that does not result in property damage or other serious consequences. With implementation of LRDP Mitigation 4.8-11, storm water discharges from the campus would be reduced and would not contribute to regional flooding problems. The proposed project is within the CNPRC, an area that drains to the Covell Drain in the west campus at UC Davis. The Covell Drain has historically experienced flooding problems due to an inability to drain water from large storm events. Recent installation of a stormwater detention basin and a stormwater retention basin in accordance with LRDP Mitigation 4.8-3(c) to serve CNPRC projects have alleviated the drainage problems associated with the Covell Drain. Increased stormwater from the proposed project would be adequately contained within the new stormwater facilities at the CNPRC and no additional improvements would be necessary. Therefore, with implementation of LRDP Mitigation 4.8-11 which is included in the proposed project, and the completion of LRDP Mitigation 4.8-3(c), the impact is considered less than significant.

Storm water runoff pollution is evaluated further in items (a,f) and (c) above.

g) Under the 2003 LRDP, housing (including on-campus student housing and housing within the proposed neighborhood) would be constructed outside the 100-year flood zones on campus (see 2003 LRDP EIR, Figure 4.8-4, 100-Year Floodplain). The proposed project includes no housing. Therefore, no impact would occur.

h, i) The 2003 LRDP EIR found that development under the 2003 LRDP could place non-residential structures within a 100-year floodplain, which could expose people and structures to risks associated with flooding and/or could impede or redirect flows, contributing to flood hazards (LRDP Impact 4.8-9). In accordance with LRDP Mitigation 4.8-9(a and b), the project will be designed to reflect the potential for flooding and with items such as raising the floor level above the base flood level and constructing the building in a manner that directs water flow away from
rather than toward other structures. With implementation of LRDP Mitigation 4.8-9(a,b), the potential flood impacts would be less than significant.

The campus is located approximately 23 miles downstream of the Monticello Dam (forming Lake Berryessa) and approximately 15 miles downstream of the Putah Diversion Dam. An inundation study prepared by the U.S. Bureau of Reclamation shows that, in the highly unlikely case of a dam breach, the campus (as well as the City of Davis) would be inundated under a maximum of 3 to 9 feet of water approximately 3.5 to 4 hours following the breach (USBR 1998). However, the probability of such a release is far less than one in one million (USBR 2000). As of June 2000, Monticello Dam was determined to be in satisfactory condition, and the dam exhibited no unusual cracks, seeps, or deformations. In addition, the State Department of Dam Safety evaluates dams regularly, which would give adequate time to respond to any deterioration in the safety of the structure. Therefore, the risk of flooding on campus as a result of a dam failure is considered a less than significant impact.

j) The campus is not subject to inundation by seiche, tsunami, or mudflow. The campus is generally flat and is not located in close proximity to any large water bodies. Therefore, no impact would occur.

Summary

Mitigation Measures 4.8-1, 4.8-2, 4.8-3(a-c), 4.8-4 (a,b), 4.8-5 (a-d), 4.8-10 (a-c), 4.8-11, 4.8-12, 4.8-13 (a,b) from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of hydrology and water quality impacts to the extent feasible. The proposed project would not exceed the levels of significance of hydrology and water quality impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant hydrology and water quality impacts that were not previously addressed.
7.9 LAND USE & PLANNING

7.9.1 Background

Section 4.9 of the 2003 LRDP EIR addresses the land use and planning effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.9 of the 2003 LRDP EIR.

Campus

The approximately 5,300-acre UC Davis campus is located within Yolo and Solano counties. Local land use is predominantly agricultural, with small cities and towns. The campus is surrounded by extensive agricultural uses to the west and south and by residential, institutional, and commercial land uses in the City of Davis, to the north and east. The City of Davis is a university-oriented community with over 62,000 residents. The UC Davis campus consists of four general units: the central campus, the south campus, the west campus, and Russell Ranch. In addition, the University of California owns several properties in the City of Davis, including buildings in downtown Davis and buildings and vacant parcels in the South Davis Research Park, located south of I-80.

As a state entity, UC Davis is not subject to municipal policies such as the City of Davis General Plan. Nevertheless, such policies are of interest to the campus.

The 2003 LRDP is the campus’ primary land use planning guide. It designates campus lands for the following uses through 2015-16: Academic and Administrative (High and Low Density); Teaching and Research Fields; Teaching and Research Open Space; Parking; Physical Education, Intercollegiate Athletics, and Recreation (PE/ICA/Recreation); Research Park (High and Low Density); Formal Open Space; Community Gardens; Faculty/Staff Housing, Student Housing; Mixed Use Housing; and Elementary School.

Project Site

The entire CNPRC is designated at Academic and Administrative-Low Density in the 2003 LRDP. Land uses at the CNPRC are consistent with the Academic and Administrative-Low Density designation.

7.9.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a land use and planning impact significant if growth under the 2003 LRDP would:

- Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project adopted for the purpose of avoiding or mitigating an environmental effect.
- Result in development of land uses that are substantially incompatible with existing adjacent land uses or with planned uses.
- Conflict with any applicable habitat conservation plan or natural community conservation plan.

An additional standard from the CEQA Guidelines’ Environmental Checklist (“a” in the checklist below) was found not applicable to campus growth under the 2003 LRDP.
7.9.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 related to land use and planning are evaluated in Section 4.9 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. The 2003 LRDP EIR did not identify any potentially significant or significant land use and planning impacts. The less than significant land use and planning impacts identified in the 2003 LRDP EIR do not require mitigation.

7.9.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>LAND USE & PLANNING</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Result in development of land uses that are substantially incompatible with existing adjacent land uses or with planned uses?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

a) The proposed project would have no potential to physically divide an established community. No impact would occur and no additional analysis is required.

b) The applicable land use plan for the campus is the 2003 LRDP. The 2003 LRDP designates land within the CNPRC as Academic and Administrative-Low Density. The proposed project would be research buildings that would be consistent with the Academic and Administrative land use designation. No impact would occur.

c) The campus does not fall within the boundaries of, nor is it adjacent to, an adopted regional HCP or NCCP. The campus has implemented two low effects HCPs for VELB at Russell Ranch. The project is located approximately two miles from the Russell Ranch. Therefore, the proposed project would not conflict with an adopted HCP or NCCP. No impact would occur.

d) The 2003 LRDP EIR identifies that an impact could result if land uses are developed under the 2003 LRDP EIR that are substantially incompatible with existing adjacent land uses or with planned uses. The proposed project would continue the development pattern of placing small research buildings within the developed area of the CNPRC. This development pattern is efficient for the growth of the CNRPC and each of the proposed buildings would be compatible with the existing buildings at the CNRPC. No impact would occur.

Summary
The 2003 LRDP EIR did not identify any significant land use and planning impacts, nor did it identify any associated mitigation measures. The proposed project would not exceed the levels of significance of land use and planning impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant land use and planning impacts that were not previously addressed.
7.10 **MINERAL RESOURCES**

7.10.1 **Background**

Section 4.6, Geology, Soils, and Seismicity, of the 2003 LRDP EIR briefly addresses mineral resources issues. The 2003 LRDP EIR concludes that development on campus would not impede extraction or result in the loss of availability of mineral resources.

Sand and gravel are important mineral resources in the region (CDOC 2000). However, natural gas is the only known or potential mineral resource that has been identified on campus. Natural gas can be extracted at wells placed considerable distances from deposits. No other known or potential mineral resources have been identified on the UC Davis campus. Therefore, development on campus does not impede extraction or result in the loss of availability of mineral resources.

7.10.2 **2003 LRDP EIR**

Because development on campus would not impede extraction or result in the loss of availability of mineral resources, the 2003 LRDP EIR did not identify any standards of significance, impacts, or mitigation measures associated with mineral resources. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR.

7.10.3 **Environmental Checklist and Discussion**

<table>
<thead>
<tr>
<th>MINERAL RESOURCES</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✔</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✔</td>
</tr>
</tbody>
</table>

a, b) Natural gas is the only known or potential mineral resource that has been identified on campus. Natural gas can be extracted at wells placed considerable distances from deposits. Therefore, development on campus would not impede extraction or result in the loss of availability of a known mineral resource. No impact would occur and no further analysis is required.
7.11 Noise

7.11.1 Background

Section 4.10 of the 2003 LRDP EIR addresses the noise effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.10 of the 2003 LRDP EIR.

Campus

The primary noise source in the vicinity of the campus is vehicular traffic using I-80, SR 113, and local roads. Other sources of noise include occasional aircraft over-flights associated with the University Airport located on the west campus and another small airport in the vicinity, agricultural activities, railroads, and landscaping activities. Land use surrounding the campus is primarily agricultural, with residential, commercial, and other uses concentrated along the northern and eastern boundaries of the main campus.

Sound is technically described in terms of amplitude (loudness) and frequency (pitch). The standard unit of sound amplitude measurement is the decibel (dB), and the decibel scale adjusted for A-weighting (dBA) is a special frequency-dependent rating scale that relates to the frequency sensitivity of the human ear. Community noise usually consists of a base of steady “ambient” noise that is the sum of many distant and indistinguishable noise sources, as well as more distinct sounds from individual local sources. A number of noise descriptors are used to analyze the effects of community noise on people, including the following:

- L_{eq}, the equivalent energy noise level, is the average acoustic energy content of noise, measured during a prescribed period, typically one hour.
- L_{dn}, the Day-Night Average Sound Level, is a 24-hour-average L_{eq} with a 10 dBA “penalty” added to noise occurring during the hours of 10:00 PM to 7:00 AM to account for greater nocturnal noise sensitivity.
- CNEL, the Community Noise Equivalent Level, is a 24-hour-average L_{eq} with a “penalty” of 5 dB added to evening noise occurring between 7:00 PM and 10:00 PM, and a “penalty” of 10 dB added to nighttime noise occurring between 10:00 PM and 7:00 AM.

Noise monitoring over a 24-hour period in 2003 at sites located in urban areas on and adjacent to the campus (including areas next to freeways, roads, residences, and academic buildings) reflected CNEL levels ranging from 63 to 65 dBA CNEL. Ambient noise levels measured over a short period at various urban sites on campus varied from 49 to 63 dBA L_{eq}.

Project Site

Noise levels at the project sites are considered low due to the rural character of the surrounding lands and because the project sites are approximately $\frac{1}{4}$ mile from County Road 98 and because County Road 98 typically has a low volume of vehicle traffic.

7.11.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a noise impact significant if growth under the 2003 LRDP would result in the following:
• Exposure of persons to or generation of noise levels in excess of levels set forth in Table 4.10-3 of the 2003 LRDP EIR.

Table 7.11.2: Thresholds of Significance for Noise Evaluations

<table>
<thead>
<tr>
<th>Noise Source</th>
<th>Criterion Noise Level</th>
<th>Substantial Increase in Noise Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Traffic and Other Long-Term Sources</td>
<td>65 dBA CNEL</td>
<td>>=3 dBA if CNEL w/project is >= 65 dBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>=5 dBA if CNEL w/project is 50–64 dBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>=10 dBA if CNEL w/project is < 50 dBA</td>
</tr>
<tr>
<td>Stadium (Periodic, intermittent)</td>
<td>70 dBA $L_{eq}(h)$</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>Daytime (7:00 a-7:00 p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evening (7:00 p-11:00 p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nighttime (11:00 p-7:00 a)</td>
<td></td>
</tr>
<tr>
<td>Railroad</td>
<td>Within 750 feet of railroad line</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>65 dBA CNEL</td>
<td>>=1.5 dBA if CNEL w/project is >= 65 dBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>=3 dBA if CNEL w/project is 60–64 dBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>=5 dBA if CNEL w/project is < 60 dBA</td>
</tr>
<tr>
<td>Construction (temporary)</td>
<td>80 dBA $L_{eq}(h)$</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>daytime (7:00 a-7:00 p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>evening (7:00 p-11:00 p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nighttime (11:00 p-7:00 a)</td>
<td></td>
</tr>
</tbody>
</table>

Source: 2003 LRDP EIR

a The 2003 LRDP would not substantially increase rail activity; therefore, a threshold of significance for rail noise is not included in this table.
b At noise-sensitive land use unless otherwise noted. Noise-sensitive land uses include residential and institutional land uses.
c $L_{eq}(h)$ is an average measurement over a one-hour period.
d Screening analysis distance criterion from FTA 1995.
e $L_{eq}(8h)$ is an average measurement over an eight-hour period.

• Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels.

• A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project.

• A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project.

• For a project within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, exposure of people residing or working in the project area to excessive noise levels.

7.11.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 related to noise are evaluated in Section 4.10 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant and potentially significant noise impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. Mitigation measures are included to reduce the magnitude of project-level impact 4.10-2 and cumulative impact 4.10-3, but these impacts are identified as significant and unavoidable because of the uncertainty regarding mitigation feasibility.
Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures

NOISE

4.10-1 Prior to initiation of construction, the campus shall approve a construction noise mitigation program including but not limited to the following:

- Construction equipment shall be properly outfitted and maintained with feasible noise-reduction devices to minimize construction-generated noise.
- Stationary noise sources such as generators or pumps shall be located 100 feet away from noise-sensitive land uses as feasible.
- Laydown and construction vehicle staging areas shall be located 100 feet away from noise-sensitive land uses as feasible.
- Whenever possible, academic, administrative, and residential areas that will be subject to construction noise shall be informed a week before the start of each construction project.
- Loud construction activity (i.e., construction activity such as jackhammering, concrete sawing, asphalt removal, and large-scale grading operations) within 100 feet of a residential or academic building shall not be scheduled during finals week.
- Loud construction activity as described above within 100 feet of an academic or residential use shall, to the extent feasible, be scheduled during holidays, Thanksgiving breaks, Christmas break, Spring break, or Summer break.
- Loud construction activity within 100 feet of a residential or academic building shall be restricted to occur between 7:30 AM and 7:30 PM.

4.10-2(a) For noise-sensitive uses adjacent to Russell Boulevard between Arlington Boulevard and Arthur Street, the existing soundwall (approximately 6.5 feet in height) could be increased slightly in height and extended to include the daycare center to the east.

For noise-sensitive uses adjacent to Russell Boulevard between Arthur Street and SR 113, and from SR 113 to La Rue/Anderson Road and from La Rue Road to Oak Street, soundwalls may be constructed for exterior residential and recreational land uses within approximately 100 feet of the centerline of Russell Boulevard,
2003 LRDP EIR Mitigation Measures

Noise

where construction of such walls would not interfere with driveway access.

The campus shall reimburse the City of Davis the campus' fair share of the cost of a City of Davis' noise abatement program for reducing interior noise levels in homes along Russell Boulevard that are significantly affected by noise from 2003 LRDP-related traffic growth. The campus' contribution to the City's noise abatement program could be used to extend sound walls as described above or for other noise abatement measures such as retrofit of homes. The campus' fair share shall be determined based on the volume of traffic added to Russell Boulevard by the campus as a result of 2003 LRDP implementation and the percentage that 2003 LRDP-related traffic increases constitute of the average daily traffic on the roadway.

4.10-2(b) For components of the 2003 LRDP having future noise-sensitive land uses such as the Neighborhood and Research Park, building and area layouts shall incorporate noise control as a design feature; including increased setbacks, landscaped berms, and using building placement to shield noise-sensitive exterior areas from direct roadway views.

4.10-5 Implement LRDP Mitigations 4.10-1 and 4.10-2.

7.11.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>Noise</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td></td>
<td></td>
<td>☑</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

a) The proposed project will not produce substantial noise in relation to the existing noise levels at the CNPRC. Noise from the proposed buildings will primarily consist of mechanical noise from the roof-top mounted ventilation equipment and these noise levels would be less than the noise level of 65 dBA for long term sources set forth in Table 7.11.2. This equipment will be modern equipment that is expected to be quieter than other similar equipment. The potential impact would be less-than-significant.
b,d) The proposed project would utilize standard construction techniques and equipment. The project is not expected to utilize extremely loud construction practices such as pile driving, blasting, or other special construction techniques. Construction of the utility corridors and the proposed buildings could take place in close proximity (within 30 feet of existing research buildings). The 2003 LRDP EIR found that construction of campus facilities pursuant to the 2003 LRDP could expose nearby receptors to excessive groundborne vibration and airborne or groundborne noise (Impact 4.10-1). Construction under the 2003 LRDP, including the proposed project, would require temporary construction activities using conventional construction techniques and equipment that would not generate substantial levels of vibration or groundborne noise. Routine noise levels from conventional construction activities (with the normal number of equipment operating on the site) range from 75 to 86 dBA Leq at a distance of 50 feet, from 69 to 80 dBA Leq at a distance of 100 feet, from 55 to 66 dBA Leq at a distance of 500 feet, and 48 to 60 dBA Leq at a distance of 1,000 feet (although noise levels would likely be lower due to additional attenuation from ground effects, air absorption, and shielding from miscellaneous intervening structures). Noise from project construction is predicted to be below the significance criteria of 80 dBA Leq daytime and evening and 70 dBA Leq nighttime at a distance of 100 feet or more from the construction activity. However, noise from construction would be audible and would temporarily elevate the local ambient noise level to some degree at distances greater than 100 feet from construction. LRDP Mitigation 4.10-1, included in the proposed project, would be implemented to control construction noise and the potential impact would be less than significant.

c) Generation of noise levels on or adjacent to the project site associated with vehicle trips, mechanical equipment, and other equipment would contribute to ambient noise levels on campus. The increased vehicle traffic is expected to be small as a result of the increase in approximately 20 people at the proposed buildings. The 2003 LRDP EIR found that implementation of the 2003 LRDP would result in increased vehicular traffic on the regional road network, which would substantially increase ambient noise levels at the following locations through 2015-16: Russell Boulevard, just west of Arlington; the west campus neighborhood site adjacent to SR 113; and on Hutchison Drive west of SR 113 (Impact 4.10-2). Some use of these roads by the new employees is expected. LRDP Mitigation 4.10-2(a-b) would address this impact by requiring specific noise abatement and noise control programs on campus and in the City of Davis. However, the campus cannot ensure that LRDP Mitigation 4.10-2(a) would be implemented by the City, and it is uncertain whether this measure would effectively reduce noise to acceptable levels. Therefore, the impact would still be considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

The 2003 LRDP EIR also recognized that development under the 2003 LRDP in combination with other regional development would cumulatively increase ambient noise levels (4.10-5). Cumulative development would increase the number of people in the region who would be exposed to temporary construction-related noise. LRDP Mitigation 4.10-5, included as part of the proposed project, would require application of the recommended noise control measures detailed in LRDP Mitigation 4.10-1. The 2003 LRDP EIR found that, with this mitigation, the cumulative impact associated with construction noise would be less than significant. LRDP Impact 4.10-2 addresses traffic noise impacts on and adjacent to the campus associated with the 2003 LRDP and cumulative growth. LRDP Mitigation 4.10-5 would require implementation of the noise control and abatement measures identified in LRDP Mitigation 4.10-2(a-b). However, as discussed above, the effectiveness and implementation of LRDP Mitigation 4.10-2(a) cannot be ensured. Therefore, the cumulative impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003
LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

e) The proposed project is approximately one mile from the University Airport. The 2003 LRDP, including the proposed project, does not propose changes to University Airport operations, nor does it propose occupied uses within the airport’s 65 CNEL noise contour. Therefore, the project would not expose people to excessive noise levels associated with this public use airport, and the impact is less than significant.

f) The University Airport is a public use airport, not a private airstrip. No other private airport facilities are within the immediate vicinity of the campus. No impact would occur. Refer to item e) above for discussion of potential noise impacts associated with the campus’ public use airports.

Summary

Mitigation measures 4.10-1, 4.10-2(a,b), and 4.10-5 from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of noise impacts to the extent feasible. The proposed project would not exceed the levels of significance of noise impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant noise impacts that were not previously addressed.
7.12 POPULATION & HOUSING

7.12.1 Background

Section 4.11 of the 2003 LRDP EIR addresses the population and housing effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.11 of the 2003 LRDP EIR.

The on-campus population at UC Davis includes students, faculty/staff, and non-UC Davis affiliates working on campus. The current and projected campus population figures are presented in Table 1 of this Tiered Initial Study. As of 2003, approximately 80 percent of the student population and 50 percent of the employee population lived in the Davis area, and approximately 94 percent of students and 90 percent of employees lived within the three-county area of Yolo, Solano, and Sacramento counties. Outside the City of Davis, the predominant residence locations of students and employees are Woodland, West Sacramento, Winters, Dixon, Vacaville, and Fairfield (UC Davis ORMP 2003d).

Vacancy rates in the City of Davis are considered low, and housing costs in the City are generally higher than those elsewhere in the region. Since 1994, the campus has been working toward the goals of maintaining a UC Davis housing supply that can accommodate 25 percent of the on-campus enrolled students and can offer housing to all eligible freshmen. The 2003 LRDP focuses on providing additional on-campus student housing that will accommodate a total of approximately 7,800 students on the core campus (or 26 percent of the peak student enrollment through 2015-16) and an additional 3,000 students in a west campus neighborhood. The campus currently offers one faculty and staff housing area (Aggie Village), which includes 21 single-family units (17 of which have cottages) and 16 duplexes. The 2003 LRDP plans to provide an additional 500 faculty and staff housing units within the west campus neighborhood through 2015-16.

Project Site

The project site is currently vacant. No housing is located or planned on or adjacent to the project site.

7.12.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers an impact related to population and housing significant if growth under the 2003 LRDP would:

- Directly induce substantial population growth in the area by proposing new housing and employment.
- Create a demand for housing that could not be accommodated by local jurisdictions.
- Induce substantial population growth in an area indirectly (for example, through extension of roads or other infrastructure).

Additional standards from the CEQA Guidelines' Environmental Checklist (“b” and “c” in the checklist below) were found not applicable to campus growth under the 2003 LRDP.

7.12.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 related to population and housing are evaluated in Section 4.11 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. A significant population and
housing impact identified in the 2003 LRDP EIR that is relevant to the proposed project is presented below with its corresponding levels of significance. No mitigation was available to reduce the magnitude of this impact, so the impact is considered significant and unavoidable.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPULATION & HOUSING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.11-1 Implementation of the 2003 LRDP would directly induce substantial population growth in the area by proposing increased enrollment and additional employment.¹</td>
<td>S</td>
<td>SU</td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

¹ No mitigation is available to reduce the magnitude of this impact.

7.12.4 Environmental Checklist and Discussion

POPULATION & HOUSING

Would the project…

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Create a demand for housing that cannot be accommodated by local jurisdictions?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) The proposed project would increase the campus population by approximately 20 employees. The 2003 LRDP EIR found that implementation of the 2003 LRDP would directly induce substantial population growth in the area by proposing increased enrollment and additional employment (Impact 4.11-1). The impact analyses for all of the resource areas covered in this Initial Study address the campus population increases associated with the project. Where possible, this document mitigates associated environmental impacts to the extent feasible. In certain circumstances, impacts that were associated with campus population growth were identified as significant and unavoidable. Accordingly, the effect of direct population growth associated with the 2003 LRDP, including the proposed project, is also considered a significant and unavoidable impact. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

The proposed project includes utility upgrades to provide increased natural gas, domestic water, and telecommunications service to the CNPRC. The increased service would be provided to meet the needs of the proposed project and to meet utility demands for potential future CNPRC growth. However, the 2003 LRDP EIR found that implementation of the 2003 LRDP, including
the proposed project, would not induce substantial population growth in the area indirectly through the extension of roads or other infrastructure because these extensions would not be provided with excess capacity in an area where lack of infrastructure is an obstacle to growth.

b) The proposed project would not displace any existing housing. Therefore, no impact would occur.

c) The proposed project would not displace substantial numbers of people. Therefore, no impact would occur.

d) The 2003 LRDP EIR found that future housing in the region is anticipated to adequately accommodate population growth associated with the 2003 LRDP, including the proposed project, as well as other population growth in the region. Therefore, the 2003 LRDP EIR found that the potential for campus growth to create a demand for housing that could not be accommodated by local jurisdictions is a less than significant impact.

Summary

The 2003 LRDP EIR did not identify any mitigation measures to reduce the significance of impacts associated with population and housing. The proposed project would not exceed the levels of significance of population and housing impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant population and housing impacts that were not previously addressed.
7.13 PUBLIC SERVICES

7.13.1 Background

Section 4.12 of the 2003 LRDP EIR addresses the public services effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.13 of the 2003 LRDP EIR.

In accordance with the CEQA Guidelines, this Public Services analysis evaluates the environmental effects associated with any physical changes required to meet increases in demand for public services, including police, fire protection, schools, and libraries. Project-level public services impacts are addressed by evaluating the effects of on-campus population growth on public services that directly serve the on-campus population (primarily UC Davis services). Cumulative public services impacts are addressed by evaluating the effects of off-campus population growth on the public services in the Cities of Davis, Dixon, Winters, and Woodland.

UC Davis provides most public services needed on campus, including fire protection, police protection, and library services. The Davis Joint Unified School District serves the City of Davis and portions of Yolo and Solano counties. These services are discussed further below:

- **Fire Protection:** The UC Davis Fire Department provides primary fire response and prevention, natural disaster response, hazardous materials incident response, and emergency medical service to the main campus. The fire department’s goal is to respond to 90 percent of campus emergency calls within 6 minutes (UC Davis Fire Department 2003). As of 2003, the UC Davis Fire Department achieves its stated standard of response (Chandler 2003).

- **Police:** In 2001-02, the UC Davis Police Department employed approximately 32 sworn officers to provide 24-hour service to the main campus and facilities owned and leased by UC Davis in the City of Davis, a service area including a campus population of approximately 36,445 people (including UC and non-UC employees, students, and dependents living in on-campus housing) (Chang 2001). Although the campus does not currently rely on any level of service standards, the Police Department has indicated that it would like to reach and maintain 1 sworn officer on the main campus per 1,000 members of the campus population. In 2001-02, the campus was just under this level, with approximately 0.9 sworn officers per 1,000 members of the campus population.

- **Schools:** In 2001-02 a total of approximately 8,677 students were enrolled in the DJUSD’s nine elementary schools, two junior high schools, one high school, one continuation high school, and one independent study program. The DJUSD estimates student enrollment based on a rate of 0.69 student per single-family residential unit and 0.44 student per multi-family residential unit in its service area.

- **Libraries:** UC Davis currently has four main libraries, distributed among the academic centers of the central campus, which serve students, faculty, staff, and the general public, including: Shields Library (the main campus library located centrally on the core campus), the Carlson Health Sciences Library, the Law Library, and the Physical Sciences and Engineering Library.

Project Site

The project site is currently vacant and there are no existing or planned public service facilities (fire, police, schools or libraries) on or adjacent to the site.
7.13.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a public services impact significant if growth under the 2003 LRDP would:

- Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services.

Effects associated with recreation services are evaluated in Section 7.14 Recreation, and effects associated with the capacity of the domestic fire water system to provide adequate fire protection are evaluated in Section 7.16 Utilities.

7.13.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on public services are evaluated in Section 4.12 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant public services impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. Mitigation measures are included to reduce the magnitude of project-level impact 4.12-3 and cumulative impacts 4.12-6 and 4.12-7, but these impacts are identified as significant and unavoidable because they cannot be fully mitigated.

2003 LRDP EIR Impacts

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC SERVICES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.12-6</td>
<td>S</td>
<td>SU</td>
</tr>
<tr>
<td>Implementation of the 2003 LRDP, in conjunction with regional growth, could generate a cumulative demand for new or expanded police and fire service facilities in the region, the construction of which could result in significant adverse environmental impacts to prime farmland and habitat.</td>
<td>S</td>
<td>SU</td>
</tr>
</tbody>
</table>

| 4.12-7 | S | SU |
| Implementation of the 2003 LRDP, in conjunction with regional growth, would increase the number of school-age children living in the area. This could generate a cumulative demand for new school facilities, the construction of which could result in significant environmental impacts to agricultural prime farmland and habitat. | S | SU |

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures

<table>
<thead>
<tr>
<th>2003 LRDP EIR Mitigation Measures</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC SERVICES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.12-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If documented unmitigated significant environmental impacts are caused by the construction of police or fire facilities in the Cities of Davis, Dixon, Woodland, and/or Winters that are needed in part due to implementation of the 2003 LRDP, UC Davis shall negotiate with the appropriate local jurisdiction to</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2003 LRDP EIR Mitigation Measures
PUBLIC SERVICES

determine the campus’ fair share (as described in Section 4.12.2.3) of the costs to implement any feasible and required environmental mitigation measures so long as the unmitigated impacts have not been otherwise reduced to less-than-significant levels through regulatory requirements, public funding, or agreements. This mitigation measure shall not apply to any other costs associated with implementation of public service facilities.

4.12-7 If documented unmitigated significant environmental impacts are caused by the construction of school facilities in the Cities of Davis, Dixon, Woodland, and/or Winters that are needed in part due to implementation of the 2003 LRDP, UC Davis shall negotiate with the appropriate local jurisdiction to determine the campus’ fair share (as described in Section 4.12.2.3) of the costs to implement any feasible and required environmental mitigation measures so long as the unmitigated impacts have not been otherwise reduced to less-than-significant levels through regulatory requirements, public funding, or agreements. This mitigation measure shall not apply to any other costs associated with implementation of public service facilities.

7.13.4 Environmental Checklist and Discussion

PUBLIC SERVICES

<table>
<thead>
<tr>
<th>Would the project…</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>
a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

i) Fire protection? [☑] [☐] [☐] [☐] [☐] [☐]

ii) Police protection? [☐] [☐] [☑] [☐] [☐] [☐]

iii) Schools? [☐] [☐] [☐] [☐] [☐] [☐]

iv) Parks? [☐] [☐] [☐] [☐] [☐] [☐]

v) Other public facilities? [☐] [☐] [☐] [☐] [☐] [☑]

a, i&ii) UC Davis Fire and Police Protection

The proposed project would increase the campus population by approximately 20 employees at the CNPRC and would incrementally contribute to the demand for campus fire and police services that were anticipated under the 2003 LRDP.

In order to continue to meet the UC Davis Fire Department’s standard of responding to 90 percent of campus emergency calls within 6 minutes, the 2003 LRDP EIR found that the campus may need to expand or renovate existing or provide new facilities, supply technologically improved equipment, implement improved management techniques, or hire additional staff for the Department. The 2003 LRDP EIR found that to ensure adequate UC Davis Police Department service for the campus population under the 2003 LRDP, the campus may need to expand existing or provide new facilities, supply technologically improved equipment, or implement improved management techniques for the Department.
While the expansion and construction of police and fire facilities under the 2003 LRDP could contribute to the 2003 LRDP’s effects on air, noise, traffic, agriculture, biological resources, cultural resources, utilities, and other resource areas, with the implementation of mitigation in the 2003 LRDP EIR and due to the relatively small areas that would be disturbed, the construction of these facilities would not individually result in significant environmental impacts. Therefore, the environmental impact associated with constructing new or altered facilities in order to maintain adequate levels of UC Davis fire and police services is considered less than significant.

Regional Fire and Police Protection

The 2003 LRDP EIR found that implementation of the 2003 LRDP, in conjunction with regional growth, could generate a cumulative demand for new or expanded police and fire service facilities in the region, the construction of which could result in significant adverse environmental impacts to prime farmland and habitat (Impact 4.12-6). To the extent that an increase in off-campus population associated with the 2003 LRDP, including the proposed project, could contribute to the demand for new police and fire facilities, in compliance with LRDP Mitigation 4.12-6, the campus would negotiate with respective jurisdictions to determine the University’s fair share of costs for feasible mitigation to reduce associated significant environmental impacts. The campus’ contribution to mitigation for such effects could include implementation of preservation mechanisms for on-campus prime farmland and/or habitat conservation. However, impacts associated with an irreversible loss of prime farmland and habitat could not be mitigated to less-than-significant levels. Therefore, the cumulative impacts related to police and fire facility construction in the Cities of Davis, Winters, Dixon, and Woodland would be significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

a, iii) Schools

The proposed project would contribute to the campus population, which could contribute to the number of school-age dependents living in the region. The 2003 LRDP EIR recognized that implementation of the 2003 LRDP, in conjunction with regional growth, would increase the number of school-age children living in the area. This could generate a cumulative demand for new school facilities, the construction of which could result in significant environmental impacts (Impact 4.12-7). Construction of new schools in the Cities of Davis, Winters, Dixon, and Woodland could result in development of agricultural areas, which could result in the permanent loss of prime farmland and habitat. Other potentially significant environmental impacts are too speculative to determine at this time. To the extent that the school-age dependents of new campus employees could contribute to the demand for new school facilities in these cities, in compliance with LRDP Mitigation 4.12-7, the campus would negotiate with respective school districts to determine the University’s fair share of costs for feasible mitigation to reduce associated significant environmental impacts. The campus’ contribution to mitigation for such effects could include implementation of preservation mechanisms for on-campus prime farmland and/or habitat conservation. However, impacts associated with an irreversible loss of prime farmland and habitat could not be mitigated to less-than-significant levels. Therefore, the impact related to school construction in the Cities of Davis, Winters, Dixon, and Woodland would be significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.
a, iv) Effects associated with parks are evaluated in Section 7.14 Recreation.

a, v) Libraries

The proposed project would contribute to the campus population, which could contribute to use of local libraries. UC Davis provides extensive academic library facilities in four general libraries that serve students, faculty, staff, and the general public, as well as in specialized libraries on campus. With its extensive existing libraries and ongoing update processes, UC Davis has adequate facilities to provide sufficient library services to serve the campus and general population’s needs through 2015-16. Therefore, construction of additional library facilities on campus as the result of campus growth under the 2003 LRDP is not anticipated. Furthermore, due to the small scale and infill nature of minor library expansions and renovations that could occur in the Cities of Davis, Dixon, Woodland, and Winters to serve cumulative growth through 2015-16, significant environmental impacts are not anticipated to result. Therefore, project-level and cumulative impacts associated with library services are considered less than significant.

Summary

Mitigation measures 4.12-6 and 4.12-7 from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of public service-related impacts to the extent feasible. The proposed project would not exceed the levels of significance of public service impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant public service impacts that were not previously addressed.
7.14 RECREATION

7.14.1 Background

Section 4.13 of the 2003 LRDP EIR addresses the environmental effects associated with modifying recreational resources to meet campus growth under the 2003 LRDP. The following discussion summarizes information presented in the 'Setting' subsection of Section 4.13 of the 2003 LRDP EIR.

UC Davis contains many park-like areas and recreation facilities. Park facilities at UC Davis range in size from small picnic and landscaped areas within campus housing areas to extensively landscaped areas in the academic core of the central campus, such as the Arboretum. Areas such as the Quad, the landscaped areas along A Street and Russell Boulevard, the Putah Creek Riparian Reserve in the west campus, and many areas within the Arboretum are used regularly by members of the UC Davis campus and visitors to the campus.

Recreation facilities on the campus include structures, bike paths, and fields used for physical education, intercollegiate athletics, intramural sports, sports clubs, and general recreation. Recreation structures include Hickey Gym, Recreation Hall, the Recreation Swimming Pool, and Recreation Lodge. In addition, two major campus recreation facilities are currently under construction: the Activities and Recreation Center and the Schaal Aquatic Center. The general public may purchase privilege cards to use some campus recreation facilities, or may join community or campus organizations that have access to some facilities.

Project Site

The project site is currently vacant and there are no existing or planned recreation facilities on or adjacent to the site.

7.14.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a recreation impact significant if growth under the 2003 LRDP would:

- Increase the use of existing neighborhood and regional parks or other recreation facilities such that substantial physical deterioration of the facility would occur or be accelerated.
- Propose the construction of recreation facilities or require the expansion of recreation facilities, which might have an adverse physical effect on the environment.

7.14.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 associated with recreation are evaluated in Section 4.13 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. A significant recreation impact identified in the 2003 LRDP EIR that is relevant to the proposed project is presented below with its corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. Mitigation measures are included to reduce the magnitude of cumulative impact 4.13-2 but this impact is identified as significant and unavoidable because it cannot be fully mitigated.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECREATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2003 LRDP EIR Impacts
RECREATION

| 4.13-2 | Implementation of the 2003 LRDP, together with the cumulative impacts of other regional development, could increase the use of off-campus recreation facilities, the development of which could result in significant environmental impacts. | S | SU |

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures
RECREATION

| 4.13-2 | If documented unmitigated significant environmental impacts are caused by the construction of recreation facilities in the Cities of Dixon, Woodland, and/or Winters that are needed in part due to implementation of the 2003 LRDP, UC Davis shall negotiate with the appropriate local jurisdiction to determine the campus’ fair share (as described in Section 4.12.2.3) of the costs to implement any feasible and required environmental mitigation measures so long as the unmitigated impacts have not been otherwise reduced to less-than-significant levels through regulatory requirements, public funding, or agreements. This mitigation measure shall not apply to any other costs associated with implementation of recreation facilities. |

7.14.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>RECREATION</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

a,b) The proposed project would contribute approximately 20 employees to the campus population and this would contribute to demand for parks and recreation facilities on and off campus.

The 2003 LRDP EIR found that increased population at UC Davis under the 2003 LRDP, including the population growth associated with the proposed project, is expected to result in increased demand for and usage of campus recreation facilities. However, to counteract the effects of increased usage, it is campus practice to increase maintenance levels of recreation facilities in response to increases in demand. In addition, the 2003 LRDP designates approximately 18 acres of land west of SR 113 for future recreation fields. The 2003 LRDP also designates land for greenbelts to the west of State Route 113, expansion of the campus Arboretum, expansion of the Putah Creek Riparian Reserve, and enhanced formal open space (garden walks...
and formal courtyards) within the central campus. The construction of new facilities would take place when warranted by increased demand and when financially feasible. The campus practice of increasing maintenance activities and the planned construction of new facilities would prevent the deterioration of existing recreation facilities, resulting in a less than significant impact.

The 2003 LRDP EIR found that implementation of the 2003 LRDP, together with other regional growth, could result in the development of parks and recreation facilities off-campus that could result in significant environmental impacts (Impact 4.13-2). Depending on the site, development of new parks and recreation facilities in the cities of Dixon, Winters, and Woodland could result in impacts such as loss of prime farmland or valuable habitat. However, environmental impacts are too speculative to determine at this time. In compliance with LRDP Mitigation 4.13-2, the campus would negotiate with respective jurisdictions to determine the University’s fair share of costs for feasible mitigation to reduce associated significant environmental impacts, if any. Due to the speculative nature of this cumulative impact, it is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

Summary

Mitigation measures 4.13-2 from the 2003 LRDP EIR are relevant to the proposed project to reduce the significance of recreation-related impacts to the extent feasible. With the implementation of these measures, the proposed project would not exceed the levels of significance of recreation impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant recreation impacts that were not previously addressed.
7.15 TRANSPORTATION, CIRCULATION, & PARKING

7.15.1 Background

Section 4.14 of the 2003 LRDP EIR addresses the transportation, circulation, and parking effects of campus growth under the 2003 LRDP. The following discussion summarizes information presented in the ‘Setting’ subsection of Section 4.14 of the 2003 LRDP EIR.

Campus

UC Davis is served by six main campus roadways or “gateways” that connect the campus to residential and downtown areas in the City of Davis, and two gateways that provide direct access to regional freeways (I-80 and SR 113). Circulation within the central campus is accommodated primarily by the campus “loop” roadway system, which includes Russell Boulevard, A Street, New and Old Davis Road, California Avenue, and La Rue Road. Other roadways within the core campus area are restricted to transit and emergency vehicles, bicyclists, and pedestrians. Primary vehicular access to the south campus is provided by Old Davis Road, to the west campus by Hutchison Drive, and to Russell Ranch by Russell Boulevard.

Level of service (LOS) is a general measure of traffic operating conditions whereby a letter grade, from A (the best) to F (the worst), is assigned to roadway intersections. These grades represent the comfort and convenience associated with driving from the driver’s perspective. To assess the worst-case traffic conditions, LOS is measured during morning (7 to 9 AM) and afternoon (4 to 6 PM) peak commute times. The LOS of campus roadways varies. Monitoring of campus intersections during peak hours in Fall 2001 and Fall 2002 found that the Hutchison Drive/Health Sciences Drive intersection (with LOS E during the PM peak hour) was the only study intersection to operate below the campus’ operation standard (standards are identified in the following section). The campus is planning on installing a traffic signal at this intersection by fall 2006.

Bicycles are a major component of the transportation system at UC Davis and in the City of Davis. UC Davis has an extensive system of bicycle paths, which makes bicycles a popular form of travel on campus. The UC Davis Bicycle Plan (UC Davis 2002) estimates that 15,000 to 18,000 bicycles travel to the campus on a typical weekday during the Fall and Spring sessions when the weather is good.

Parking at UC Davis is provided by a combination of surface lots and parking structures. UC Davis Transportation and Parking Services (TAPS) oversees parking services on campus including selling parking passes, providing traffic control at special events, ticketing violators, and measuring parking utilization throughout campus on a quarterly basis. Approximately 14,500 parking spaces were provided on campus as of 2001-02.

Project Site

Automobile and bicycle access to the CNPRC is provided by County Road 98 and by Hutchison Drive. Within the CNPRC, access to individual buildings and to parking lots is provided by access roads and driveways. Parking within the CNPRC is provided at specific parking lots and recent surveys indicate that the parking utilization during peak periods is approximately 87 percent with 227 of 277 spaces being utilized.

7.15.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a transportation, circulation, and parking impact significant if growth under the 2003 LRDP would:
• Cause an increase in the traffic that may be substantial in relation to the existing roadway capacity of the street system as indicated by LOS standards for congestion at intersections.

The addition of project traffic causing a LOS change from acceptable to unacceptable would have a significant impact. The following LOS thresholds apply to the study intersections.

- LOS D is the minimum acceptable LOS for UC Davis.
- LOS E is the minimum acceptable LOS for the City of Davis. LOS F is acceptable for the City of Davis Core Area.
- LOS E is the minimum acceptable LOS for I-80 and its associated interchanges.
- LOS C is the minimum acceptable LOS for SR 113 and its associated interchanges.

In addition, the project would have a significant impact if the project adds 10 or more vehicles to the volume of a study intersection that is expected to operate unacceptably without the project. For intersections that operate unacceptably without the project, even a small amount of additional traffic could increase the delay. For this EIR, future volumes are rounded to the nearest 10; therefore, 10 vehicles is the minimum amount of traffic that could be added to an intersection already operating at an unacceptable level.

Increased intersection congestion would also be a significant impact if it would exceed a LOS standard established by the county congestion management agency (or any affected agency or jurisdiction) for designated roads or highways.

- LOS E is the minimum acceptable LOS for roadways and intersections in Solano County.
- LOS E is the minimum acceptable LOS for I-80 and its associated interchanges between the Solano County limit and Olive Drive.
- LOS E is the minimum acceptable LOS for SR 113 and its associated interchanges within the Davis city limits.
- LOS E is the minimum acceptable LOS for Russell Boulevard between SR 113 and B Street.
 ~ LOS E is the minimum acceptable LOS for Richards Boulevard between First Street and I-80.
 ~ LOS E is the minimum acceptable LOS for First Street between B Street and Richards Boulevard.
 ~ LOS E is the minimum acceptable LOS for B Street between First Street and 5th Street.

• Result in inadequate parking capacity.

For parking, a project would be considered to have a significant impact if it is expected to increase the winter utilization rate to over 90 percent on the central campus, Health Sciences District, and/or major facilities of the west and south campus without adequate time (usually 24 months) to implement a parking solution to campus construction standards.

• Conflict with applicable adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks).
Impacts related to safety risks associated with the UC Davis airport and emergency access are discussed in Section 7.7 Hazards and Hazardous Materials. The 2003 LRDP would make only limited changes to the roadway network and would not create or increase hazards due to design features such as dangerous intersections.

7.15.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on traffic, circulation, and parking are evaluated in Section 4.14 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant and potentially significant traffic, circulation, and parking impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. Mitigation measures are included to reduce the magnitude of impact 4.14-2, but this impact is identified as significant and unavoidable because mitigation falls within other jurisdictions to enforce and monitor and therefore cannot be guaranteed by the University of California.

2003 LRDP EIR Impacts

<table>
<thead>
<tr>
<th>Transportation, Circulation, & Parking</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14-1</td>
<td>S</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the 2003 LRDP would cause unacceptable intersection operations at on-campus intersections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.14-2</td>
<td>S</td>
<td>SU</td>
</tr>
<tr>
<td>Implementation of the 2003 LRDP would cause unacceptable intersection and freeway LOS operations at off-campus facilities, including facilities contained in the Yolo County and Solano County Congestion Management Plans.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.14-3</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the 2003 LRDP would create additional parking demand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.14-4</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the 2003 LRDP would increase demand for transit services.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable

Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures

<table>
<thead>
<tr>
<th>Transportation, Circulation, & Parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14-1(a)</td>
</tr>
<tr>
<td>4.14-1(b)</td>
</tr>
<tr>
<td>4.14-1(c)</td>
</tr>
</tbody>
</table>
2003 LRDP EIR Mitigation Measures
TRANSPORTATION, CIRCULATION, & PARKING

4.14-2(a) UC Davis shall continue to actively pursue Transportation Demand Management strategies to reduce vehicle-trips to and from campus.

4.14-2(b) UC Davis shall continue to monitor AM and PM peak hour traffic operations at critical intersections and roadways in the campus vicinity at least every three years to identify locations operating below UC Davis, City of Davis, Yolo County, Solano County, or Caltrans LOS thresholds and to identify improvements to restore operations to an acceptable level.

4.14-2(c) UC Davis shall review individual projects proposed under the 2003 LRDP as they advance through the environmental clearance phase of development to determine if intersection or roadway improvements are needed with the additional traffic generated by the proposed project. If intersection operations are found to degrade to unacceptable levels, UC Davis shall contribute its fair share towards roadway improvements at affected study intersections.

4.14-3(a) UC Davis shall continue to actively pursue Transportation Demand Management strategies to reduce parking demand.

4.14-3(b) UC Davis shall continue to monitor parking demand on a quarterly basis to identify campus parking areas with a parking utilization over 90 percent. UC Davis shall provide additional parking if a proposed project is expected to increase the winter utilization rate to over 90 percent on the central campus, Health Sciences District, and/or major facilities of the west and south campus.

4.14-4 UC Davis shall monitor transit ridership to identify routes operating over capacity with increased campus growth. UC Davis shall work with transit providers to identify additional service required with campus growth or new transit routes needed to serve future development areas.

7.15.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>TRANSPORTATION, CIRCULATION, & PARKING</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f) Result in inadequate parking capacity?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
g) Conflict with applicable adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?

a,b) The proposed project would result in increased vehicle trips to and from the CNPRC due to the increase of approximately 20 campus employees.

The 2003 LRDP EIR found that implementation of the 2003 LRDP, including the proposed project, would cause unacceptable intersection operations at on-campus intersections (Impact 4.14-1) and the proposed project would contribute to this increase through the increased trips created by the new employees. LRDP Mitigation 4.14-1(a-c), included in the proposed project, requires that the campus continue to pursue Transportation Demand Management strategies to reduce vehicle-trips, monitor peak hour traffic operations at critical locations, review individual projects to determine if intersection operations will degrade to unacceptable levels, and implement physical improvements when intersection operations degrade. The 2003 LRDP EIR found that additional vehicle trips under the 2003 LRDP would cause the LOS at ten on-campus intersections to drop below acceptable levels. With implementation of measures identified in the 2003 LRDP EIR, the impact associated with the project’s contribution to degraded on-campus intersection operations would be less than significant.

The 2003 LRDP EIR also identified that implementation of the 2003 LRDP would cause unacceptable intersection and freeway operations off-campus (Impact 4.14-2) and the proposed project would contribute to this increase through the increased trips created by the new employees. LRDP Mitigation 4.14-2(a-c), included in the proposed project, requires that the campus continue to pursue Transportation Demand Management strategies to reduce vehicle-trips, monitor peak hour traffic operations at critical locations, review individual projects to determine if operations will degrade to unacceptable levels, and contribute fair share costs to roadway improvements if operations degrade. Based on monitoring conducted in 2005, no intersection improvements are necessary at this time. Because the feasibility and/or implementation of off-campus roadway and intersection improvements is ultimately within the jurisdiction of other authorities and cannot be guaranteed by the University, this impact is considered significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

c) Impacts related to safety risks associated with the UC Davis airport are discussed in Section 7.7, Hazards and Hazardous Materials.

d) The project would not require any changes to the roadway network and would not create or increase hazards due to design features such as dangerous intersections or incompatible uses. The project is not expected to increase road usage in the core campus. No impact would occur.

e) Impacts related to emergency access are discussed in Section 7.7, Hazards and Hazardous Materials.

f) The proposed project would increase parking demand by approximately 20 spaces. The 2003 LRDP EIR identified that implementation of the 2003 LRDP would create additional parking demand (Impact 4.14-3). In compliance with LRDP Mitigation 4.14-3(a-b), included in the proposed project, the campus will: continue to pursue Transportation Demand Management strategies to reduce parking demand; monitor parking demand on a quarterly basis; and provide additional parking if a proposed project is expected to increase winter parking utilization rates
over 90 percent on the central campus, at the Health Sciences District, and/or at major facilities on the west or south campuses. The CNPRC currently has a parking utilization rate of 87% with 227 out of 277 spaces being utilized. The additional 20 employees would be able to park at the CNPRC without exceeding a 90% utilization rate. UC Davis will continue to monitor the CNPRC parking utilization and will provide additional parking, if needed, prior to full occupancy of the proposed buildings. Recently completed bicycle lanes along Hutchison Drive are expected to allow increased bicycle ridership to and from the CNPRC which may decrease the demand for parking spaces at the CNPRC. With implementation of measures identified in the 2003 LRDP EIR, this impact would be less than significant.

g) The proposed project would increase the campus population by approximately 20 people. However, the location of the CNPRC on the west campus is a remote site that currently does not have transit services. The proposed project would not increase the demand for transit services. No impact would occur.

Summary

Mitigation measures 4.14-1(a-c), 4.14-2(a-c), 4.14-3(a,b), and 4.14-4 from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of transportation, circulation, and parking impacts to the extent feasible. The proposed project would not exceed the levels of significance of transportation, circulation, and parking impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant impacts that were not previously addressed. As described in items (c) and (e) above, airport hazards and emergency access impacts are discussed in Section 7.7, Hazards and Hazardous Materials.
7.16 Utilities & Service Systems

7.16.1 Background

Section 4.15 of the 2003 LRDP EIR addresses the effects of campus growth on utility systems under the 2003 LRDP. The campus provides the following utility and service systems to campus projects:

- Domestic/Fire Water
- Utility Water
- Agricultural Water
- Storm Drainage
- Wastewater
- Solid Waste
- Chilled Water
- Natural Gas
- Telecommunications
- Electricity
- Natural Gas

The campus is required to comply with a UC-wide green building policy and clean energy standard. The policy encourages principles of energy efficiency and sustainability in the planning, financing, design, construction, renewal, maintenance, operation, space management, facilities utilization, and decommissioning of facilities and infrastructure to the extent possible, consistent with budgetary constraints and regulatory and programmatic requirements. In addition, the policy aims to minimize increased use of non-renewable energy by encouraging programs addressing energy efficiency, local renewable power and green power purchases from the electrical grid (UC Office of the President 2003).

Project Site

The proposed project would use campus utilities and service systems including: domestic water, wastewater, storm drainage, solid waste, electricity, natural gas, and telecommunications. These utilities and service systems are discussed below:

- **Domestic Water**: The campus' domestic/fire water system obtains water from six deep aquifer wells to serve the needs of campus buildings, landscape irrigation on the west and south campuses, and heating and cooling systems at the Central Heating and Cooling Plant (CHCP). The system includes approximately 144,000 linear feet of distribution pipelines, a water tower and a ground storage tank with a combined capacity of approximately 500,000 gallons, an underground storage reservoir with a capacity of approximately 1.3 million gallons, and a booster pump station. In 2001-02, annual domestic water consumption was approximately 2,670 acre feet and peak demand was 3,100 gpm. The proposed project would extend a water main from the east side of Country Road 98 westward into the CNPRC area to serve the proposed project and future developments. The new water service would include service distribution pipes to individual buildings throughout the CNPRC.

- **Wastewater**: UC Davis operates a campus wastewater conveyance and treatment system that is independent from regional facilities. The campus Wastewater Treatment Plant (WWTP) is located in the south campus, and treated effluent from the plant discharges to Putah Creek. The peak month capacity of the campus WWTP, as regulated under the existing NPDES permit issued by the CVRWQCB, is 2.7 mgd. Since the current WWTP began operation in March 2000, the maximum monthly flow has been 2.2 mgd. Maximum flow in 2001-02 was 1.6 mgd. The proposed buildings would connect to the existing wastewater pipes located throughout the CNPRC. No upgrade of the wastewater system would be needed to serve the buildings.

- **Storm Drainage**: The central campus and developed parts of the west and south campuses are served by campus storm water drainage systems. The proposed project would include
revisions to the site drainage at each building site to provide adequate drainage away from each building and into the CNPRC drainage system. No upgrade of the CNRPC drainage system would be required.

- **Solid Waste**: UC Davis provides solid waste collection and recycling services for the campus. All nonrecycled and nonhazardous solid wastes collected on campus are disposed at the campus owned and operated Class III sanitary landfill located in the west campus west of County Road 98 and north of Putah Creek. The campus sends approximately 8,700 tons of solid waste to the landfill per year (approximately 34 tons per working day). In addition, approximately 3,300 tons of wastes from the UC Davis Medical Center in Sacramento are disposed at the landfill each year. The permitted capacity of the landfill is 500 tons per day, and the landfill unit currently being used has anticipated capacity to serve the campus needs through 2023. In 2001-02, approximately 10,804 tons of materials were diverted for recycling and reuse. The amount of materials diverted represents approximately 55 percent of the total waste generated on campus.

- **Electricity**: The main campus currently receives electricity from PG&E at the campus substation located south of I-80 and from an approximately 2.7 MW cogeneration plant located on the core campus in the CHCP facility. The campus electrical system has an available capacity of 64.4 megawatts (MW). Annual electrical usage on campus in 2001-02 was approximately 200 million kilowatt-hours (KWh) per year and peak demand was approximately 34,000 KW. The proposed project would connect to existing electrical service within the CNRPC. No upgrade to the electrical system would be needed,

- **Natural Gas**: The campus purchases natural gas from outside vendors and provides it to the campus facilities through PG&E pipelines. Natural gas is provided to four locations on campus for use and distribution: the CHCP, the Primate Center Plant, the Cogeneration Plant, and the Master Meter #1. Peak natural gas demand in 2001-02 was approximately 2,900 therms per hour. The existing service at the CNRPC is not adequate to serve the proposed projects and a system upgrade would be provided by extending a new natural gas service main from the east side of County Road 98 westward into the CNRPC developed area. The new service main would then connect to existing gas distribution lines and new distribution lines to serve new buildings within the CNRPC.

- **Telecommunications**: The majority of all telephone, data, video, and wireless infrastructure and facilities on campus are owned by the campus and operated by the UC Davis Communications Resources Department. The main campus switching facility is located in the Telecommunications Building. As new buildings are constructed, the Communications Resources Department coordinates with the UC Davis Office of Architects and Engineers to design and direct the installation of intra- and inter-building telecommunications facilities in accordance with established standards. The existing telecommunication service within the CNRPC is not adequate to serve the proposed projects. Like the domestic water and natural gas service, new telecommunication service would be provided by extending a new telecommunication line from the east side of County Road 98 westward into the CNRPC developed area. The new line would then connect to existing and new buildings in order to provide increased telecommunications services to the CNRPC.

7.16.2 2003 LRDP EIR Standards of Significance

The 2003 LRDP EIR considers a utilities and service systems impact significant if growth under the 2003 LRDP would:

- Exceed the Central Valley Regional Water Quality Control Board’s wastewater treatment requirements.
• Require or result in the construction or expansion of water or wastewater treatment facilities, which would cause significant environmental effects.

• Require or result in the construction or expansion of storm water drainage facilities, which could cause significant environmental effects.

• Result in the need for new or expanded water supply entitlements.

• Exceed available wastewater treatment capacity.

• Be served by a landfill with insufficient permitted capacity to accommodate the project’s solid waste disposal needs.

• Fail to comply with applicable federal, state, and local statutes and regulations related to solid waste.

• Require or result in the construction or expansion of electrical, natural gas, chilled water, or steam facilities, which would cause significant environmental impacts.

• Require or result in the construction or expansion of telecommunication facilities, which would cause significant environmental impacts.

7.16.3 2003 LRDP EIR Impacts and Mitigation Measures

Impacts of campus growth under the 2003 LRDP through 2015-16 on utilities and service systems are evaluated in Section 4.15 of the 2003 LRDP EIR. As analyzed in Section 4 of this Initial Study, the proposed project is within the scope of analysis in the 2003 LRDP EIR. Significant and potentially significant utilities and service systems impacts identified in the 2003 LRDP EIR that are relevant to the proposed project are presented below with their corresponding levels of significance before and after application of mitigation measures identified in the 2003 LRDP EIR. In addition, impacts 4.15-1, 4.15-3, 4.15-4, 4.15-6, and 4.15-9, presented below, are considered less than significant prior to mitigation, but mitigation measures were identified in the 2003 LRDP EIR to further reduce the significance of these impacts. Less than significant impacts that do not include mitigation are not presented here. Mitigation measures are included to reduce the magnitude of project-level impact 4.15-7 and cumulative impact 4.15-10, but these impacts are identified as significant and unavoidable because they cannot be fully mitigated.

<table>
<thead>
<tr>
<th>2003 LRDP EIR Impacts</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTILITIES & SERVICE SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.15-1 Implementation of the 2003 LRDP would require the expansion of campus domestic/fire water extraction and conveyance systems, which would not cause significant environmental impacts.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.15-3 Implementation of the 2003 LRDP would require the expansion of wastewater treatment and conveyance facilities, the construction and operation of which would not result in significant environmental impacts.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.15-4 Implementation of the 2003 LRDP would require the expansion of campus storm drainage conveyance and detention facilities, which would not result in significant environmental impacts.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.15-6 Implementation of the 2003 LRDP would require the expansion of the campus electrical system, which would not result in significant adverse environmental impacts.</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>4.15-7 Implementation of the 2003 LRDP would require the expansion of natural gas transmission systems, which would result in environmental impacts.</td>
<td>LS</td>
<td>LS</td>
</tr>
</tbody>
</table>
Mitigation measures in the 2003 LRDP EIR that are applicable to the proposed project are presented below. Since these mitigation measures are already being carried out as part of implementation of the 2003 LRDP, they will not be readopted in this Initial Study or Negative Declaration. The benefits of these mitigation measures will be achieved independently of considering them as specific mitigation measures of this project. Nothing in this Initial Study in any way alters the obligations of the campus to implement 2003 LRDP EIR mitigation measures.

2003 LRDP EIR Mitigation Measures

UTILITIES & SERVICE SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15-9</td>
<td>Implementation of the 2003 LRDP would require expansion of campus communication facilities, which would not result in significant environmental impacts.</td>
</tr>
<tr>
<td>4.15-10</td>
<td>Implementation of the 2003 LRDP together with other regional development could generate a cumulative demand for wastewater treatment facilities in the region, the construction of which could result in significant environmental impacts on habitat.</td>
</tr>
</tbody>
</table>

Levels of Significance: LS=Less than Significant, S=Significant, PS=Potentially Significant, SU=Significant and Unavoidable
4.15-9 Once preliminary project design is developed, the campus shall review each project to determine whether existing capacity of the telecommunications system is adequate. If the capacity is determined to be inadequate, the campus will upgrade the system to provide adequate service to the project site prior to occupation or operation.

4.15-10 If documented unmitigated significant environmental impacts are caused by the construction of wastewater treatment facilities in the Cities of Davis, Dixon, Woodland, and/or Winters that are needed in part due to implementation of the 2003 LRDP, UC Davis shall negotiate with the appropriate local jurisdiction to determine the campus’ fair share (as described in Section 4.12.2.3) of the costs to implement any feasible and required environmental mitigation measures so long as the unmitigated impacts have not been otherwise reduced to less-than-significant levels through regulatory requirements, public funding, or agreements. This mitigation measure shall not apply to any other costs associated with implementation of utilities or service systems.

7.16.4 Environmental Checklist and Discussion

<table>
<thead>
<tr>
<th>UTILITIES & SERVICE SYSTEMS</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Impact for which 2003 LRDP EIR is Sufficient</th>
<th>Less than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would the project…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the providers existing commitments?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>g) Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>h) Require or result in the construction or expansion of electrical, natural gas, chilled water, or steam facilities, which would cause significant environmental impacts?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>i) Require or result in the construction or expansion of telecommunication facilities, which would cause significant environmental impacts?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
a) The proposed project would contribute a relatively small amount of effluent to the campus wastewater treatment plant. The project would connect to an existing 8-inch sewer line within the CNPRC that has adequate capacity for the proposed project (Head 2003). The permitted peak monthly average capacity of the campus WWTP is currently 2.7 mgd, and growth under the 2003 LRDP, including the proposed project, is anticipated to increase the volume of discharge to 3.85 mgd through 2015-16. As discussed further in item “a,f” in Section 7.8, Hydrology and Water Quality, with continuation of current practices and implementation of 2003 LRDP EIR mitigation measures, the campus anticipates meeting the WWTP’s permit requirements. Therefore, the impact associated with possible exceedances of WWTP requirements would be less than significant.

b) Domestic Water Facilities

The proposed project would extend a water main from the east side of Country Road 98 westward into the CNPRC area to serve the proposed project and future developments. The new water service would include service distribution pipes to individual buildings throughout the CNPRC. The 2003 LRDP EIR identified that campus development under the 2003 LRDP would require the expansion of campus domestic/fire water extraction and conveyance systems, the construction of which would not cause significant environmental impacts (LRDP Impact 4.15-1). The domestic water lines associated with the project would be constructed within previously disturbed areas where cultural and biological resources would not likely occur. In addition, the campus would survey the site before construction and perform monitoring during construction (in compliance with 2003 LRDP Mitigations 4.4-1 and 4.5-1) to avoid inadvertent biological and cultural resource impacts. LRDP Mitigation 4.15-1(a-b), included in the proposed project, would further reduce the significance of this impact by requiring the water conservation strategies outlined in LRDP Mitigation 4.8-5(a) (see Hydrology and Water Quality section). Therefore, effects associated with domestic water utility extensions would be less than significant.

Utility Water Facilities

The proposed project would not connect to the campus utility water system.

Wastewater Facilities

The proposed buildings would connect to the existing wastewater pipes located throughout the CNPRC. No upgrade of the wastewater system would be needed to serve the buildings. The 2003 LRDP EIR identified that implementation of the 2003 LRDP, including the proposed project, would require the expansion of campus wastewater treatment and conveyance facilities, the construction and operation of which would not result in significant environmental impacts (Impact 4.15-3). Future expansion of the existing WWTP and installation of new sanitary sewer conveyance lines would primarily occur on previously disturbed ground. In addition, the campus would survey the site before construction and perform monitoring during construction (in compliance with 2003 LRDP Mitigations 4.4-1 and 4.5-1) to avoid inadvertent biological and cultural resource impacts. LRDP Mitigation 4.15-3, included in the proposed project, further reduced the significance of this impact by ensuring the campus practice of reviewing projects to determine if there is adequate capacity to provide sanitary sewer service, and to upgrade the system as necessary. The evaluation for the CNPRC indicated that the existing wastewater pipes are adequate to serve the proposed project. Therefore, this impact would be less than significant.

The proposed project would contribute approximately 20 employees and dependents to the regional population. This would contribute to the cumulative demand for wastewater treatment facilities in the region, which the 2003 LRDP EIR recognized could result in significant environmental impacts (Impact 4.15-10). Because expansion of wastewater treatment facilities in
local jurisdictions could require development on agricultural land, loss of farmland and/or habitat could result. To the extent that an increase in off-campus population associated with the 2003 LRDP, including the proposed project, could contribute to the demand for wastewater treatment, in compliance with LRDP Mitigation 4.15-10, the campus would negotiate with the affected jurisdictions to determine the University’s fair share of costs for feasible mitigation to reduce associated significant environmental impacts. The campus' contribution to mitigation could include implementation of preservation mechanisms for on-campus prime farmland and/or habitat conservation. However, impacts associated with an irreversible loss of prime farmland and habitat could not be mitigated to less-than-significant levels. Therefore, the cumulative impacts related to wastewater treatment facility construction in the Cities of Davis, Winters, Dixon, and Woodland would be significant and unavoidable. This impact was adequately analyzed in the 2003 LRDP EIR and was fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

c) The project would provide drainage from the building sites to connect to the stormwater drainage system within the CNPRC which drains to the Covell Drain. The 2003 LRDP EIR identified that implementation of the 2003 LRDP would require the expansion of storm drainage conveyance and detention facilities, the construction and operation of which would not result in significant environmental impacts (Impact 4.15-4). In addition, the campus would survey the site before construction and perform monitoring during construction (in compliance with 2003 LRDP Mitigations 4.4-1 and 4.5-1) to avoid inadvertent biological and cultural resource impacts. LRDP Mitigation 4.15-4, included in the proposed project, would further reduce this less-than-significant impact by ensuring the campus practice of reviewing projects to determine if there is adequate capacity to provide storm water drainage service for the proposed project, and to upgrade the system as necessary.

d) The proposed project would provide a new domestic water service main and connections to the proposed buildings. The proposed project would not connect to the shallow/intermediate aquifer. Impacts associated with the project's demand for water from the deep aquifer are addressed in item (b) in Section 7.8, Hydrology and Water Quality. As addressed in Section 7.8, mitigation measures would be implemented under the 2003 LRDP to reduce the campus' demand for domestic/fire and utility water, to monitor impacts on the groundwater aquifers, and to manage water sources if impacts on the aquifers are identified. However, regardless of mitigation, because the effects of increased groundwater extraction are not currently well understood, impacts of increased water use are considered significant and unavoidable (LRDP Impacts 4.8-5 and 4.8-6). These impacts were adequately analyzed in the 2003 LRDP EIR and fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

e) The campus' WWTP would provide wastewater treatment for the proposed project. As discussed in item (b) above, LRDP Mitigation 4.15-3, included in the proposed project, would ensure the campus practice of reviewing projects to determine if there is adequate capacity to provide sanitary sewer service, and to upgrade the system as necessary. Therefore, this impact would be less than significant.

f) The waste disposal needs of the proposed project would be served by the campus landfill. The proposed project would generate typical solid waste and all biohazardous waste would be treated separately for off-site incineration by a private contractor. As identified in the 2003 LRDP EIR, given the demands anticipated under the 2003 LRDP (including the proposed project), the life
expectancy of the campus landfill is to 2023. Therefore, the campus landfill would have adequate capacity to serve the proposed project and the impact would be less than significant.

g) As described above, all biohazardous waste would be incinerated at an off-site location. The proposed project would comply with all applicable statutes and regulations related to solid waste. Therefore, no impact would occur.

h) The proposed project would expand the campus electricity and natural gas distribution in order to provide adequate service to the proposed building and to serve future growth at the CNPRC. The 2003 LRDP EIR identified that growth under the 2003 LRDP would require the expansion of the campus electrical system, and campus/PG&E natural gas transmission systems, (LRDP Impacts 4.15-3, 4.15-4, and 4.15-5). Electrical and natural gas utility extensions required by the proposed project would be constructed within a previously disturbed area. In addition, the campus would survey the site before construction and perform monitoring during construction (in compliance with 2003 LRDP Mitigations 4.4-1 and 4.5-1) to avoid inadvertent biological and cultural resource impacts. LRDP Mitigations 4.15-6(a,b), 4.15-7(a), and 4.15-8, included in the proposed project, would further reduce the significance of this impact by requiring the campus to continue to incorporate energy efficient design elements, meet or exceed Title 24 energy conservation requirements, and review the project to determine if the relevant utility supply is adequate at the point of connection and if any upgrades to the utility system are required. The Regent's Policy on Green Building Design and Clean Energy Standards, adopted July 17, 2003, set a goal for all new building projects, other than acute-care facilities, approved after the 2004-05 fiscal year, to outperform the required provisions of the California Energy Code (Title 24) energy-efficiency standards by at least 20 percent. Therefore, environmental effects associated with utility extensions would be less than significant.

i) The proposed project would increase telecommunication service at the CNPRC by providing a new telecommunication line from the east side of County Road 98 to the CNPRC developed area to serve the proposed buildings and future growth at the CNPRC. The 2003 LRDP EIR identified that growth under the 2003 LRDP would require the expansion of the campus telecommunications system, which would not result in significant environmental impacts (LRDP Impact 4.15-9). Telecommunication extensions required by the proposed project would be constructed within a previously disturbed area. In addition, the campus would survey the site before construction and perform monitoring during construction (in compliance with 2003 LRDP Mitigations 4.4-1 and 4.5-1) to avoid inadvertent biological and cultural resource impacts. LRDP Mitigation 4.15-9, included in the proposed project, would further reduce the significance of this impact by requiring the campus to determine if the telecommunication capacity is adequate at the point of connection and if any upgrades to the system are required. Therefore, environmental effects associated with utility extensions would be less than significant.

Summary

Mitigation measures 4.15-1(a,b), 4.15-3, 4.15-4, 4.15-6(a,b), 4.15-7(a,b), 4.15-9, 4.15-10 from the 2003 LRDP EIR are relevant to the proposed project and reduce the significance of utility and service system impacts to the extent feasible. The proposed project would not exceed the levels of significance of utility and service system impacts previously addressed in the 2003 LRDP EIR, nor would it introduce any new significant impacts that were not previously addressed.
Mandatory Findings of Significance

Would the project...

<table>
<thead>
<tr>
<th>mandatory findings of significance</th>
<th>potentially significant impact</th>
<th>less than significant with mitigation</th>
<th>impact for which 2003 LRDP EIR is sufficient</th>
<th>less than significant impact</th>
<th>no impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) The proposed project would not significantly affect fish or wildlife habitat, nor would it eliminate examples of California history or prehistory. Cumulative regional impacts could be significant, but mitigation measures to reduce these potentially significant impacts to less-than-significant levels are not available or are not within the jurisdiction of the University of California to enforce and monitor. These impacts were adequately analyzed in the 2003 LRDP EIR and fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.

b,c) The proposed project would not contribute to significant unavoidable impacts identified in the 2003 LRDP EIR related to: agriculture resources, biological resources. It would incrementally contribute to, but would not exceed, significant and unavoidable impacts related to: aesthetics, air quality, cultural resources, geology and soils, hazards and hazardous materials, hydrology and water quality, noise, population and housing, public services, recreation, transportation/circulation, and utilities and service systems. These impacts were adequately analyzed in the 2003 LRDP EIR and fully addressed in the Findings and Statement of Overriding Considerations adopted by The Regents in connection with its approval of the 2003 LRDP. No conditions have changed and no new information has become available since certification of the 2003 LRDP EIR that would alter this previous analysis.
8 FISH & GAME DETERMINATION

Based on the information presented in this Tiered Initial Study, the project has a potential to adversely affect wildlife or the habitat upon which wildlife depend. Therefore, a filing fee will be paid.

___ Certificate of Fee Exemption

__X__ Pay Fee
9 REFERENCES

Chandler, Mike, UC Davis Fire Chief. 2003, February 27. Personal communication with Sarah Mattern; regarding achievement of stated standard of response.

UC Davis. 2002. UC Davis Bicycle Plan.

UC Davis. 1997, October. UC Davis Water Management Plan.

UC Davis Agricultural Services. 2003. UC Davis Irrigation Database (from Irrigation Services Billing) for crops and aquaculture.

UC Davis ORMP. 2003c. Campus Water Balance.

UC Davis ORMP. 2003d. Fall 2002 UC Davis Travel Behavior Survey.

10 AGENCIES & PERSONS CONSULTED

UC Davis, Architects and Engineers, Michael Head

11 REPORT PREPARERS

Matt Dulcich, UC Davis, Office of Resource Management and Planning
Sid England, UC Davis, Office of Resource Management and Planning
Shabnam Barati, URS Corporation.
Appendix B: Comments and Responses to Comments
COMMENTS AND RESPONSES TO COMMENTS

The Draft Tiered Initial Study for the UC Davis California National Primate Research Center 2007 Laboratory Project was circulated for public and agency review from October 16, 2006 to November 15, 2006. The document was submitted to the California Governor’s Office of Planning and Research, State Clearinghouse and Planning Unit for distribution to state agencies and the State Clearinghouse assigned the tracking number 2006102076 to the project. Comments were received during from the following agencies/individuals:

Comment 1: Letter from California Department of Water Resources, Floodway Protection Section 1416 Ninth Street, PO Box 942836 Sacramento, CA 942360001

Comment 2: Email from Susan Cohen

These comments and responses to comments are provided on the following pages.
October 23, 2006

Sid England
University of California
Office of Resource Management and Planning, UC Davis
Davis, California 95616

UC Davis CNPRC 2007 Research Laboratory Project
State Clearinghouse (SCH) Number: 2006102076

The project corresponding to the subject SCH identification number has come to our attention. The limited project description suggests your project may be an encroachment on the State Adopted Plan of Flood Control. You may refer to the California Code of Regulations, Title 23 and Designated Floodway maps at http://recbd.ca.gov/. Please be advised that your county office also has copies of the Board's designated floodways for your review. If indeed your project encroaches on an adopted flood control plan, you will need to obtain an encroachment permit from the Reclamation Board prior to initiating any activities. The attached Fact Sheet explains the permitting process. Please note that the permitting process may take as much as 45 to 60 days to process. Also note that a condition of the permit requires the securing all of the appropriate additional permits before initiating work. This information is provided so that you may plan accordingly.

If after careful evaluation, it is your assessment that your project is not within the authority of the Reclamation Board, you may disregard this notice. For further information, please contact Sam Brandon of my staff at (916) 574-0651.

Sincerely,

Mike Mirmazaheri, Chief
Floodway Protection Section

cc: Governor's Office of Planning and Research
State Clearinghouse
1400 Tenth Street, Room 121
Sacramento, CA 95814
Encroachment Permits Fact Sheet

Basis for Authority
State law (Water Code Sections 8534, 8608, 8609, and 8710 – 8723) tasks the Reclamation Board with enforcing appropriate standards for the construction, maintenance, and protection of adopted flood control plans. Regulations implementing these directives are found in California Code of Regulations (CCR) Title 23, Division 1.

Area of Reclamation Board Jurisdiction
The adopted plan of flood control under the jurisdiction and authority of the Reclamation Board includes the Sacramento and San Joaquin Rivers and their tributaries and distributaries and the designated floodways.

Streams regulated by the Reclamation Board can be found in Title 23 Section 112. Information on designated floodways can be found on the Reclamation Board’s website at http://recbd.ca.gov/designated_floodway/ and CCR Title 23 Sections 101 - 107.

Regulatory Process
The Reclamation Board ensures the integrity of the flood control system through a permit process (Water Code Section 8710). A permit must be obtained prior to initiating any activity, including excavation and construction, removal or planting of landscaping within floodways, levees, and 10 feet landward of the landside levee toes. Additionally, activities located outside of the adopted plan of flood control but which may foreseeable interfere with the functioning or operation of the plan of flood control is also subject to a permit of the Reclamation Board.

Details regarding the permitting process and the regulations can be found on the Reclamation Board’s website at http://recbd.ca.gov/ under “Frequently Asked Questions” and “Regulations,” respectively. The application form and the accompanying environmental questionnaire can be found on the Reclamation Board’s website at http://recbd.ca.gov/forms.cfm.

Application Review Process
Applications when deemed complete will undergo technical and environmental review by Reclamation Board and/or Department of Water Resources staff.

Technical Review
A technical review is conducted of the application to ensure consistency with the regulatory standards designed to ensure the function and structural integrity of the adopted plan of flood control for the protection of public welfare and safety. Standards and permitted uses of designated floodways are found in CCR Title 23 Sections 107 and Article 8 (Sections 111 to 137). The permit contains 12 standard conditions and additional special conditions may be placed on the permit as the situation warrants. Special conditions, for example, may include mitigation for the hydraulic impacts of the project by reducing or eliminating the additional flood risk to third parties that may caused by the project.

Additional information may be requested in support of the technical review of
your application pursuant to CCR Title 23 Section 8(b)(4). This information may include but not limited to geotechnical exploration, soil testing, hydraulic or sediment transport studies, and other analyses may be required at any time prior to a determination on the application.

Environmental Review
A determination on an encroachment application is a discretionary action by the Reclamation Board and its staff and subject to the provisions of the California Environmental Quality Act (CEQA) (Public Resources Code 21000 et seq.). Additional environmental considerations are placed on the issuance of the encroachment permit by Water Code Section 8608 and the corresponding implementing regulations (California Code of Regulations – CCR Title 23 Sections 10 and 16).

In most cases, the Reclamation Board will be assuming the role of a “responsible agency” within the meaning of CEQA. In these situations, the application must include a certified CEQA document by the “lead agency” [CCR Title 23 Section 8(b)(2)]. We emphasize that such a document must include within its project description and environmental assessment of the activities for which are being considered under the permit.

Encroachment applications will also undergo a review by an interagency Environmental Review Committee (ERC) pursuant to CCR Title 23 Section 10. Review of your application will be facilitated by providing as much additional environmental information as pertinent and available to the applicant at the time of submission of the encroachment application.

These additional documentations may include the following documentation:

- California Department of Fish and Game Streambed Alteration Notification (http://www.dfg.ca.gov/1600/),
- Clean Water Act Section 404 applications, and Rivers and Harbors Section 10 application (US Army Corp of Engineers),
- Clean Water Act Section 401 Water Quality Certification, and
- corresponding determinations by the respective regulatory agencies to the aforementioned applications, including Biological Opinions, if available at the time of submission of your application.

The submission of this information, if pertinent to your application, will expedite review and prevent overlapping requirements. This information should be made available as a supplement to your application as it becomes available. Transmittal information should reference the application number provided by the Reclamation Board.

In some limited situations, such as for minor projects, there may be no other agency with approval authority over the project, other than the encroachment permit by Reclamation Board. In these limited instances, the Reclamation Board
may choose to serve as the “lead agency” within the meaning of CEQA and in most cases the projects are of such a nature that a categorical or statutory exemption will apply. The Reclamation Board cannot invest staff resources to prepare complex environmental documentation.

Additional information may be requested in support of the environmental review of your application pursuant to CCR Title 23 Section 8(b)(4). This information may include biological surveys or other environmental surveys and may be required at anytime prior to a determination on the application.
Comment noted. At this time, the project would not require any encroachment permit from the Department of Water Resources. If future changes to the project would alter this conclusion, the University would reexamine the need for an encroachment permit. The comment and the permit requirements from the Department of Water Resources do not change the conclusions of the Tiered Initial Study regarding the environmental effects of the proposed project on flood hazards and water resources.
From: Susan Cohen [sqcohen@ucdavis.edu]
To: UC Davis Environmental Review
Subject: CNPRC 2007 Research Laboratory Project Tiered Initial Study

I would like to submit comments regarding this project:

CNPRC 2007 Research Laboratory Project Tiered Initial Study

The lack of public transportation to this side of campus is disturbing. Neither Unitrans nor other shuttles are able to transport staff from central public transit locations to this part of campus.

In addition, the recently constructed bike lanes added to Hutchison Road are not safe east of highway 113 until the main campus grounds are reached. I hope this is corrected so that this route is able to be used by bicycles with the normal safety expected of bike lanes.

These are two areas of concern that I hope will be addressed in the final project proposal.

Thank you.

Susan Cohen
UC IPM Education and Publications
phone: (530) 754-9184
e-mail: sqcohen@ucdavis.edu
website: http://www.ipm.ucdavis.edu

10/30/2006
RESPONSE TO COMMENT 2:

The comment accurately describes that public transit is not provided to the California National Primate Research Center (CNPRC) or to other parts of the UC Davis West Campus. The 2003 Long Range Development Plan (LRDP) Environmental Impact Report (EIR) identified LRDP Mitigation 4.14-4 as an on-going mitigation measure to monitor existing transit demand and provide increased service to future development areas such as the CNPRC if campus growth warrants such additional service. At this time, Unitrans and other transit service providers have not identified that the West Campus or the CNPRC would produce adequate transit ridership to support the addition of new transit service to this portion of UC Davis. On-going monitoring will continue and additional transit services could be provided in the future.

The comment describes a perceived deficiency in the bike lanes along Hutchison Drive east of State Route 113. Upgrades to the bike lanes have recently been completed and additional bike lane upgrades are planned for completion in the summer of 2007. The existing bicycle facilities along Hutchison Drive meet current design standards. However, Hutchison Drive is a roadway with a high volume of motorized vehicles and cyclists may feel more comfortable using alternative bike routes such as Russell Boulevard or Garrod Drive for accessing the West Campus and the CNRPC. These alternative bike routes are accessible from many points and provide an alternative option for cyclists. The proposed project would not result in a hazardous condition for cyclists.

The submitted comments will be forwarded to the appropriate UC Davis staff to ensure that transit and bike planning efforts are undertaken with consideration of the desired transportation improvements for the West Campus. However, the comments do not change the conclusions of the Tiered Initial Study regarding the environmental effects of the proposed project.