California Tomato Cropping

Exploring the effect of improved agricultural techniques on N$_2$O emissions in California tomato cropping systems.

Field sites: This study was conducted in two tomato fields located in Winters, CA. One represents the standard tomato management practices while the second utilizes improved agricultural techniques: reduced tillage, drip irrigation and a grain cover crop.

Conventional System
- Conventional Tillage
- Furrow Irrigation
- Rip and reform Beds

Integrated System
- Reduced Tillage
- Subsurface Drip Irrigation
- Winter Grain Cover Crop (Triticale trios)
- Preserve Planting Beds

Cumulative Emissions: Cumulative N$_2$O emissions are 2.5X lower in the integrated system than the conventional system, with more fertilizer applied and a higher crop yield.

Why N$_2$O?
Nitrous oxide is a very potent greenhouse gas and contributes to the destruction of stratospheric ozone. Agricultural activities are the source of approximately 75% of global N$_2$O emissions. There is potential to reduce N$_2$O emissions in intensively managed agroecosystems. High uncertainty around N$_2$O emissions exists due to scarcity of accurate annual N$_2$O flux estimates.

Discussion:
- During the growing season, N$_2$O emissions are lower in reduced tillage with drip irrigation due to increase synchrony between nitrogen availability and crop demand.
- Fertilizing through the subsurface drip system allows for more control over how much nitrogen is being added and results in lower levels of soil mineral nitrogen throughout the season.

Field sites: This study was conducted in two tomato fields located in Winters, CA. One represents the standard tomato management practices while the second utilizes improved agricultural techniques: reduced tillage, drip irrigation and a grain cover crop.

Cumulative Emissions: Cumulative N$_2$O emissions are 2.5X lower in the integrated system than the conventional system, with more fertilizer applied and a higher crop yield.

Why N$_2$O?
Nitrous oxide is a very potent greenhouse gas and contributes to the destruction of stratospheric ozone. Agricultural activities are the source of approximately 75% of global N$_2$O emissions. There is potential to reduce N$_2$O emissions in intensively managed agroecosystems. High uncertainty around N$_2$O emissions exists due to scarcity of accurate annual N$_2$O flux estimates.

Discussion:
- During the growing season, N$_2$O emissions are lower in reduced tillage with drip irrigation due to increase synchrony between nitrogen availability and crop demand.
- Fertilizing through the subsurface drip system allows for more control over how much nitrogen is being added and results in lower levels of soil mineral nitrogen throughout the season.

Field sites: This study was conducted in two tomato fields located in Winters, CA. One represents the standard tomato management practices while the second utilizes improved agricultural techniques: reduced tillage, drip irrigation and a grain cover crop.

Cumulative Emissions: Cumulative N$_2$O emissions are 2.5X lower in the integrated system than the conventional system, with more fertilizer applied and a higher crop yield.

Why N$_2$O?
Nitrous oxide is a very potent greenhouse gas and contributes to the destruction of stratospheric ozone. Agricultural activities are the source of approximately 75% of global N$_2$O emissions. There is potential to reduce N$_2$O emissions in intensively managed agroecosystems. High uncertainty around N$_2$O emissions exists due to scarcity of accurate annual N$_2$O flux estimates.

Discussion:
- During the growing season, N$_2$O emissions are lower in reduced tillage with drip irrigation due to increase synchrony between nitrogen availability and crop demand.
- Fertilizing through the subsurface drip system allows for more control over how much nitrogen is being added and results in lower levels of soil mineral nitrogen throughout the season.

Field sites: This study was conducted in two tomato fields located in Winters, CA. One represents the standard tomato management practices while the second utilizes improved agricultural techniques: reduced tillage, drip irrigation and a grain cover crop.

Cumulative Emissions: Cumulative N$_2$O emissions are 2.5X lower in the integrated system than the conventional system, with more fertilizer applied and a higher crop yield.

Why N$_2$O?
Nitrous oxide is a very potent greenhouse gas and contributes to the destruction of stratospheric ozone. Agricultural activities are the source of approximately 75% of global N$_2$O emissions. There is potential to reduce N$_2$O emissions in intensively managed agroecosystems. High uncertainty around N$_2$O emissions exists due to scarcity of accurate annual N$_2$O flux estimates.

Discussion:
- During the growing season, N$_2$O emissions are lower in reduced tillage with drip irrigation due to increase synchrony between nitrogen availability and crop demand.
- Fertilizing through the subsurface drip system allows for more control over how much nitrogen is being added and results in lower levels of soil mineral nitrogen throughout the season.

Field sites: This study was conducted in two tomato fields located in Winters, CA. One represents the standard tomato management practices while the second utilizes improved agricultural techniques: reduced tillage, drip irrigation and a grain cover crop.

Cumulative Emissions: Cumulative N$_2$O emissions are 2.5X lower in the integrated system than the conventional system, with more fertilizer applied and a higher crop yield.

Why N$_2$O?
Nitrous oxide is a very potent greenhouse gas and contributes to the destruction of stratospheric ozone. Agricultural activities are the source of approximately 75% of global N$_2$O emissions. There is potential to reduce N$_2$O emissions in intensively managed agroecosystems. High uncertainty around N$_2$O emissions exists due to scarcity of accurate annual N$_2$O flux estimates.

Discussion:
- During the growing season, N$_2$O emissions are lower in reduced tillage with drip irrigation due to increase synchrony between nitrogen availability and crop demand.
- Fertilizing through the subsurface drip system allows for more control over how much nitrogen is being added and results in lower levels of soil mineral nitrogen throughout the season.